Autores/as
Resumen
Este artículo presenta un sistema para la creatividad computacional colaborativa artística aplicada a la creación musical, llamado New Electronic Assistant (NEA). NEA es un sistema que puede aprender de estilos musicales en formato simbólico, generar piezas siguiendo los estilos aprendidos y transformar sus resultados a través de la interacción en tiempo real. A lo largo del texto, NEA es introducido y enmarcado dentro de los conceptos de la creatividad
colaborativa computacional. Para analizar el desempeño de NEA en entornos reales de co-creación, se realiza un proceso de generación sistemática de piezas musicales, de las que se extraen fragmentos que son usados en un experimento de validación con humanos. Los resultados del experimento sugieren altos niveles de eficiencia en el proceso de co-creación, relacionados con el tiempo de producción de nuevas piezas, la sorpresa expresada por
los participantes del experimento y el valor percibido de las piezas generadas por NEA. El experimento concluye con una sección donde se comentan detalles de las piezas percibidas con mayor valor por los participantes del experimento. Al final del texto se hace una reflexión sobre el rol de los sistemas generativos, que requieren interacción humana, en procesos reales de creación colaborativa.
Palabras clave:
Citas
Boden, M. A. (1994). What is creativity? En Dimensions of Creativity (pp. 75-117). Cambridge, Mass.: Bradford/The MIT press.
Boden, M. A. (2009). Conceptual spaces. En Milieus of creativity (pp. 235-243). Springer.
Briot, J. P., Hadjeres, G. & Pachet, F. D. (2020). Deep learning techniques for music generation (Vol. 1). Springer.
Candy, L. & Edmonds, E. (2002, October). Modeling co-creativity in art and technology. En Proceedings of the 4th conference on Creativity & cognition (pp. 134-141).
Catak, M., AlRasheedi, S., AlAli, N., AlQallaf, G., AlMeri, M. y Ali, B. (2021, September). Artificial Intelligence Composer. En 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 608-613). IEEE.
Chaillou, S. (2020). ArchiGAN: Artificial intelligence x architecture. En Architectural intelligence (pp. 117-127). Springer.
Collins, N. (2018). ‘…there is no reason why it should ever stop’: large-scale algorithmic composition. Journal of creative music systems, 3(1).
Csikszentmihalyi, M. (2013). Creativity: Flow and the psychology of discovery and invention (1st Ed.). Harper Perennial.
Csikszentmihalyi, M., Abuhamdeh, S. y Nakamura, J. (2014). Flow. En Flow and the foundations of positive psychology (pp. 227-238). Springer.
Davis, N. (2013). Human computer co-creativity: Blending human and computational creativity. En G. Smith y A. Smith (Eds.), Proceedings of the Doctoral Consortium of Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE) 2013, number WS-13-23 in AAAI Technical Report, 9-12. AAAI.
Eck, D. & Schmidhuber, J. (2002). A first look at music composition using lstm recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 103, 48.
Eigenfeldt, A., Burnett, A. & Pasquier, P. (2012, May). Evaluating musical metacreation in a live performance context. En Proceedings of the Third International Conference on Computational Creativity (pp. 140-144).
Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT press.
Glines, P. W. (2022). Imposing Structure on Generated Sequences: Constrained Hidden Markov Processes (Doctoral Dissertation). Idaho State University.
Hämäläinen, M. (2018). Poem machine-a co-creative nlg web application for poem writing. En The 11th International Conference on Natural Language Generation Proceedings of the Conference. The Association for Computational Linguistics.
Herndon, H. & Dryhurst, M. (Hosts). (2021, August 17). Latent Visions, Promptism and the future of AI art with Adverb [Audio podcast episode]. In Intrdependence. https://bit.ly/3AgERtU
Hiller, L. A. & Baker, R. A. (1964). Computer Cantata: A study in compositional method. Perspectives of New Music, 3(1), 62-90.
Itti, L. & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision research, 49(10), 1295-1306.
Jacob, M. (2019). Improvisational artificial intelligence for embodied co-creativity (Doctoral Dissertation). Georgia Institute of Technology.
Jordanous, A. (2017). Co-creativity and perceptions of computational agents in co-creativity. School of Computing, University of Kent.
Kahneman, D. & Miller, D. T. (1986). Norm theory: Comparing reality to its alternatives. Psychological review, 93(2), 136.
Kantosalo, A., Ravikumar, P. T., Grace, K. & Takala, T. (2020, September). Modalities, Styles and Strategies: An Interaction Framework for Human-Computer Co-Creativity. En ICCC (pp. 57-64).
Lubart, T. (2005). How can computers be partners in the creative process: classification and commentary on the special issue. International Journal of Human-Computer Studies, 63(4-5), 365-369.
Macedo, L., Cardoso, A., Reisenzein, R. & Lorini, E. (2009). Artificial surprise. Handbook of research on synthetic emotions and sociable robotics: New applications in affective computing and artificial intelligence, 267-291.
Maguire, R., Maguire, P. & Keane, M. T. (2011). Making sense of surprise: an investigation of the factors influencing surprise judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(1), 176.
Mathews, M. V. (1991). The radio baton and conductor program, or: Pitch, the most important and least expressive part of music. Computer Music Journal, 15(4), 37-46.
Meyer, L. B. (1957). Meaning in music and information theory. The Journal of Aesthetics and Art Criticism, 15(4), 412-424.
MIDI Manufacturers Association. (1996). The complete MIDI 1.0 detailed specification. Los Angeles, CA, The MIDI Manufacturers Association.
Ó Nuanáin, C., Herrera, P. & Jordá, S. (2017). Rhythmic concatenative synthesis for electronic music: techniques, implementation, and evaluation. Computer Music Journal, 41(2), 21-37.
Ortony, A. & Partridge, D. (1987, August). Surprisingness and expectation failure: what's the difference? En IJCAI (pp. 106-108).
Pachet, F., Roy, P. & Barbieri, G. (2011). Finite-length Markov processes with constraints. In Twenty-Second International Joint Conference on Artificial Intelligence.
Pinch, T. J. & Trocco, F. (2004). Analog days. Harvard University Press.
Privato, N., Rampado, O. & Novello, A. (2022). Scramble Live: Combining LSTM and Markov Chains for Real-time Musical Interaction. En Proceedings of the 19th Sound Music Computing Conference (SMC'22).
Quilici, M. E. (2005). Creativity: Surprise and abductive reasoning. Semiotica, 2005(153), 325-342.
Reisenzein, R. (2000). Exploring the strength of association between components of emotion syndromes: The case of surprise. Cognition & Emotion, 10, 241-277.
Roberts, A., Engel, J., Mann, Y., Gillick, J., Kayacik, C., Nørly, S., ... & Eck, D. (2019). Magenta Studio: Augmenting Creativity with Deep Learning in Ableton Live. Proceedings of the International Workshop on Musical Metacreation (MUME).
Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M. & Yang, Y. H. (2022). Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Transactions on Multimedia.
Teigen, K. H. & Keren, G. (2003). Surprises: Low probabilities or high contrasts? Cognition, 87, 55-71. DOI: 10.1016/s0010-0277(02)00201-9.
Wang, H., Ohsawa, Y., Hu, X. & Xu, F. (2015). Idea discovery: a context-awareness dynamic system approach for computational creativity. En Smart Modeling and Simulation for Complex Systems (pp. 99-111). Springer.
Wiggins, G. A. (2006). A preliminary framework for description, analysis and comparison of creative systems. Knowledge-Based Systems, 19(7), 449-458.
Wright, M. & Freed, A. (1997, September). Open SoundControl: A new protocol for communicating with sound synthesizers. En ICMC.