How to Cite
Gómez, D. ., & Sánchez , D. . (2010). Graphic interfaces for digital audio synthesis. Kepes, 7(6), 137–151. Retrieved from https://revistasojs.ucaldas.edu.co/index.php/kepes/article/view/484

Authors

Daniel . Gómez
Instituto Tecnológico Metropolitano
danielgomez@itm.edu.co
David Sánchez
davidsanchez@itm.edu.co

Abstract

Abstract

This article puts forward a discussion around audio digital synthesizers, particularly analyzing de development of their interfaces and the interaction these instruments offer to the interpreter. A comparative scheme between a synthesizer and a traditional musical instrument will be used to analyze different aspects of its functioning, related with the physical properties and the different cognitive processes involved in the learning to use them both. This exercise will evidence a series of special characteristics that condition the use of synthesizers which are related to their shape, the type of learning presented and the physical response to the interaction. Additionally to the comparative exercise, the synthesizer is analyzed under the light of the growing info graphics practice. This presentation reveals practical possibilities for the design of graphic interfaces for digital synthesizers. This view is approached with a diversity of digital interfaces design strategies which, given the characteristics to be intervened, use conceptual, graphic, mathematics, and statistics tools. As a result, prototypes of interfaces have come up which, from their possibilities of interaction, visual feedback and way to group elements, suppose new control and cognition possibilities of the audio digital synthesis.

ARFIB, D., J. M. COUTURIER & L. KESSOUS. (2004). Design and Use of Some New Digital Musical Instruments. En Gesture-Based Communication in HCI. Berlín, Alemania: Springer.

COPLAND, A. (2002). What to Listen for in Music. First edition. USA: Signet Classics. p. 63.

FLETCHER, N. & T. ROSSING. (1998). The Physics of Musical Instruments. NY, USA: Springer.

FREED, A. (1995). Improving Graphical User Interfaces For Computer Music Applications. Proceedings of the CHI. Computer Music Journal, 19: 4-5.

GOUDESEUNE, C. & G. E. GARNETT. (1999). Performance Factors in Control of High-Dimensional Spaces. Proceedings ICMC International Computer Music Conference, Beijing, China.

GREY, J. M. (1977). Multidimensional perceptual scaling of musical timbres. Journal Acoustical Society of America, 61: 1270-1277.

JORDÀ, S. (2005). Digital Lutherie. Tesis Doctoral, Departamento de Tecnología,Universitat Pompeu Fabra, Barcelona, España.

LOVISCACH,J.(2008).Programming a Music Synthesizer through Data Mining. Proceedings. New Interfaces for Musical Expression 2008, Genova, Italia (207- 210)

MOMENI, Ali & David WESSEL. (2003). Characterizing and controlling musical material intuitively with geometric models. Proceedings Conference on New
Interfaces for Musical Expression NIME, Montreal, Quebec, Canada.

MOOG, Robert A. (1964). Voltage-Controlled Electronic Music Modules. AES Convention 16 (October 1964). p. 346.

PINCH, T. and F. TROCCO. (2005). Analog Days: The Invention and Impact of the Moog Synthesizer. Cambridge, MA, USA: Harvard University Press. p. 53-69.

RUSS, M. (2004). Sound Synthesis and Sampling. 2ª Edición. Cap. 2. Burlington, USA: Focal Press.

TUFTE, E. (1990). Envisioning Information. New York, USA: Graphics Press.

WESSEL, D. L. (1979). Timbre space as a musical control structure. Computer Music Journal, 3 (2): 45-52

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |