Authors
Abstract
Cordyceps, a fascinating fungus that has captured the interest of researchers and health enthusiasts for its many potential medicinal benefits to humans, has been used and studied for hundreds of centuries in traditional chinese medicine. Its popularity has increased in recent years due to scientific evidence supporting its medicinal healing properties. One of the most outstanding characteristics of Cordyceps is its ability to strengthen the immune system. The bioactive compounds present in the mushroom can enhance the body’s immune response, which is beneficial in preventing conditions and promoting overall health. In addition, Cordyceps possesses anti-inflammatory properties, a key factor in many chronic diseases, Cordyceps has been associated with other positive health effects. It has been used to increase vitality, energy, improve athletic performance and promote sexual health along with fertility in both men and women. Cordyceps has also been found to have antioxidant and antimicrobial properties, which can protect the body against free radical damage and fight infection. This article will explore the history and science behind the use of Cordyceps, as well as its various species that lead to a variety of benefits in Chinese medicine and is now being implemented in the Latin American market. It will also discuss how to consume Cordyceps and how to choose the right form to maximize its benefits.
References
2. Arora, R., Singh, N. y Singh, R. (2013). Characterization of an entomophagous medicinal fungus Cordyceps sinensiss (Berk.) Sacc. of Uttarakhand, India. https://www.semanticscholar.org/paper/e70c6df9fa89a8de0b7692f28d3102031a29f093
3. Arora, R. K. y Singh, R. P. (2009). Effect of nutritional sources on mycelial growth of caterpillar mushroom Cordyceps sinensiss (Berk.) Sacc. Journal of Mycology and Plant Pathology, 39(1), 114-117.
4. Ashraf, S. A., Elkhalifa, A. E., Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S., Adnan, M. y Hadi, S. (2020). Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules, 25, 2735. https://doi.org/10.3390/molecules25122735
5. Bok, J., Lermer, L., Chilton, J., Klingeman, H. G. y Neil Towers, G. H. (1999). Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 51, 891-898. https://doi.org/10.1016/S0031-9422(99)00128-4
6. Cao, L., Ye, Y. y Han, R. (2015). Fruiting body production of the medicinal chinese caterpillar mushroom, Ophiocordyceps sinensis (ascomycetes), in artificial medium. International journal of medicinal mushrooms, 17, 1107-1112. DOI: 10.1615/intjmedmushrooms.v17.i11.110
7. Cleaver, P. D., Loomis-Powers, M. y Patel, D. (2004). Analysis of quality and techniques for hybridization of medicinal fungus Cordyceps sinensis
8. (Berk.) Sacc. (ascomycetes). International Journal of Medicinal Mushrooms, 6, 151-164. http://dx.doi.org/10.1615/intjmedmushr.v6.i2.60
9. Cohen, N., Cohen, J., Asatiani, M. D., Varshney, V. K., Yu, H. T., Yang, Y. C., Li, Y. H., Mau, J. L. y Wasser, S. P. (2014). Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms. International Journal of Medicinal Mushrooms, 16, 273-291. DOI: 10.1615/intjmedmushr.v16.i3.80
10. Chen, S. Y., Ho, K. J., Hsieh, Y. J., Wang, L. T. y Mau, J. L. (2012). Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT, 47, 274-278. http://dx.doi.org/10.1016/j.lwt.2012.01.019
11. Chen, Y. S., Liu, B. L. y Chang, Y. N. (2011). Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean Journal Chemical Engineering, 28, 875–879. https://link.springer.com/article/10.1007/s11814-010-0438-6
12. Das, S. K., Masuda, M., Sakurai, A. y Sakakibara, M. (2010). Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia, 81, 961-968. http://dx.doi.org/10.1016/j.fitote.2010.07.010
13. De, H. (2024). Hidratante De Labios Lippie Balm. Montoc Cosmetic Tools. https://montoccosmetictools.com/products/hidratante-de-labios-lippie-balm-natural
14. Dziezak, J. D. (1986). Preservatives antioxidants. The ultimate answer to oxidation. Food Technology, 40, 94-102.
15. Elkhateeb, W. A. (2020). What medicinal mushroom can do? Chemestry Research Journal, 5(1), 106-118. http://chemrj.org/download/vol-5-iss-1-2020/chemrj-2020-05-01-106-118.pdf
16. Elkhateeb, W. A., Daba, G. M., Thomas, P. y Wen, T. C. (2019). Medicinal mushrooms as a new source of natural therapeutic bioactive compound. Egyptian Pharmaceutical Journal, 18, 88-101. DOI:10.4103/epj.epj_17_19
17. He, Y. T., Zhang, X. L., Xie, Y. M., Xu, Y. X. y Li, J. R. (2013). Extraction and antioxidant property in vitro of cordycepin in artificially cultivated Cordyceps militaris. Advanced Materials Research, 750-752, 1593-1596. https://doi.org/10.4028/www.scientific.net/amr.750-752.1593 18. Holliday, J. y Cleaver, M. (2004). On the trail of the Yak. Ancient Cordyceps in the modern world.
19. Huang, Y. L., Leu, S.F, Liu, B. C., Sheu, C. C y Huang, B. M. (2004). In vivo stimulatory effect of Cordyceps sinensis mycelium and its fractions on reproductive functions in male mouse. Comparative Study, 75,1051-1562. https://pubmed.ncbi.nlm.nih.gov/15207653/
20. Ji, D. B., Ye, J., Li, C. L., Wang, Y.H., Zhao, J. y Cai, S. Q. (2008). Antiaging effect of Cordyceps sinensis extract. Phytotherapy Research, 23(1),116-122. https://doi.org/10.1002/ptr.2576
21. Jia, J. M., Tao, H. H. y Feng, B. M. (2009). Cordyceamides A and B from the Culture Liquid of Cordyceps sinensis (BERK.) SACC. Chemical and Pharmaceutical Bulletin, 57(1), 99-101. https://doi.org/10.1248/cpb.57.99
22. Jiang, Y. y Yao, Y. J. (2002). Names related to Cordyceps sinensis anamorph. Mycotaxon, 84, 245-254.
23. Jones, K. (1997). Cordyceps: Tonic food of Ancient China. Sylvan Press.
24. Kanlayavattanakul, M. y Lourith, N. (2023). Cordyceps militaris polysaccharides: preparation and topical product application. Fungal Biology and Biotechnology, 10. http://dx.doi.org/10.1186/s40694-023-00150-5
25. Kendrick, B. Ainsworth and Bisby’s dictionary of the fungi. Mycologist, 17(1),17-19. DOI:10.1017/S0269915X03001204
26. Kontogiannatos, D., Koutrotsios, G., Xekalaki, S. y Zervakis, G. I. (2021). Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris –A review of various aspects and recent trends towards the exploitation of a valuable fungus. Journal of Fungi, 7, 986. https://doi.org/10.3390/jof7110986
27. Kuo, C. F., Chen, C. C., Luo, Y. H., Huang, R. Y., Chuang, W.J., Sheu, C. C. y Lin, Y. S. (2005). Cordyceps sinensis mycelium protects mice from group A streptococcal infection. Journal of Medical Microbiology, 54, 795-802.
28. https://doi.org/10.1099/jmm.0.45704-0
29. Lee, C. T., Huang, K. S., Shaw, J. F., Chen, J. R., Kuo, W. S., Shen, G., Grumezescu, A. M., Holban, A. M., Wang, Y. T., Wang, J. S., Hsiang, Y. P., Lin, Y. M., Hsu, H. H. y Yang, C. H. (2020). Trends in the immunomodulatory effects of Cordyceps militaris: Total extracts, polysaccharides and cordycepin. Frontiers in Pharmacology, 11. http://dx.doi.org/10.3389/fphar.2020.575704
30. Lee Chan, J. S., Barseghyan, G. S., Asatiani, M. D. y Wasser, S. P. (2015). Chemical composition and medicinal value of fruiting bodies and submerged cultured mycelia of caterpillar medicinal fungus Cordyceps militaris CBS-132098 (ascomycetes). International Journal of Medicinal Mushrooms, 17, 649-659. DOI: 10.1615/intjmedmushrooms.v17.i7.50
31. Li, C., Li, Z., Fan, M., Cheng, W., Long, Y., Ding, T. y Ming, L. (2006). The composition of Hirsutella sinensis, anamorph of Cordyceps sinensis. Journal of Food Composition and Analysis, 19, 800-805. https://doi.org/10.1016/j.jfca.2006.04.007
32. Li, S., Li, P., Ji, H., Zhu, Q., Dong, T. T. X. y Tsim, K. W. K. (2001). The nucleosides contents and their variation in natural Cordyceps sinensis and cultured Cordyceps Mycelia. Journal of Chinese Pharmaceutical Sciences, 10, 175-189. https://repository.hkust.edu.hk/ir/Record/1783.1-107487
33. Li, S. P., Li, P., Dong, T. T. X. y Tsim, K. W. K. (2001). Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine, 8, 207-212. https://doi.org/10.1078/0944-7113-00030
34. Li, S. P., Yang, F. Q. y Tsim, K. W. K. (2006). Quality control of Cordyceps sinensis, a valued traditional chinese medicine. Journal Pharmaceutical and Biomedical Analysis, 41,1571-1584. DOI: 10.1016/j.jpba.2006.01.046
35. Li, X. T., Li, H. C., Li, C. B., Dou, D. Q. y Gao, M. B. (2010). Protective effects on mitochondria and antiaging activity of polysaccharides from cultivated fruiting bodies of Cordyceps militaris. The American Journal of Chinese Medicine, 38(06),1093-1106. http://dx.doi.org/10.1142/s0192415x10008494
36. Lin, X. X., Xie, Q. M., Shen, W. H. y Chen, Y. (2001). Effects of fermented Cordyceps powder on pulmonary function in sensitized guinea pigs and airway inflammation in sensitized rats. Zhongguo Zhong Yao Za Zhi, 26, 622-625. https://pubmed.ncbi.nlm.nih.gov/12776432/
37. Liu, P., Zhu, J., Huang, Y. y Liu, C. (1996). Influence of Cordyceps sinensis (Berk.) Sacc. and rat serum containing same medicine on IL-1, IFN and TNF produced by rat Kupffer cells. China Journal of Chinese Materia Médica, 21. https://europepmc.org/article/med/9388927
38. Marshall, A. C. (2020). Traditional Chinese medicine and clinical pharmacology. En F. Hock y M. Garlinski (Eds.), Drug Discovery and Evaluation: Methods in Clinical Pharmacology (455-482). Springer. https://doi.org/10.1007/978-3-319-68864-0_60
39. Matos, L. C., Pereira Machado, J., Monteiro, F. J. y Greten, H. J. (2021). Understanding traditional chinese medicine therapeutics: An overview of the basics and clinical applications. Healthcare, 9, 257. 10.3390/healthcare9030257
40. Medicina china tradicional | Cigna. (2023). Cigna.com.https://www.cigna.com/es-us/knowledgecenter/ hw/temas-de-salud/medicina-china-tradicional-aa140227spec
41. Paterson, R. (2008). Cordyceps: A traditional chinese medicine and another fungal therapeutic biofactory? Phytochemistry, 69, 1469-1495. doi: 10.1016/j.phytochem.2008.01.027
42. Qin, P., Li, X., Yang, H., Wang, Z. Y. y Lu, D. (2019). Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules, 24, 2231. doi:10.3390/molecules24122231.
43. Qu, S. L., Li, S. S., Li, D. y Zhao, P. J. (2022). Metabolites and their bioactivities from the genus Cordyceps. Microorganisms, 10, 1489. https://doi.org/10.3390/microorganisms10081489
44. Reis, F. S., Barros, L., Calhelha, R. C., Cirić, A., Van Griensven, L. J. L. D., Soković, M. y Ferreira, I. C. F. R. (2013). The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties. Food and Chemical Toxicology, 62, 91-98. https://doi.org/10.1016/j.fct.2013.08.033
45. Reyes, A. E. (2008). Evolución histórica de la medicina tradicional china. Comunidad y Salud, 6. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-
46. 32932008000200005
47. Sánchez, C. (2017). Bioactives from mushroom and their application. En M. Puri (Ed.), Food Bioactives (23-57). Springer. https://doi.org/10.1007/978-3-319-51639-4_2
48. Sharma, S. (2004). Trade of Cordyceps sinensiss from high altitudes of the Indian Himalaya: Conservation and biotechnological priorities. Current Science, 86, 1614-1619.
49. Shrestha, B., Zhang, W., Zhang, Y. y Liu, X. (2012). The medicinal fungus Cordyceps militaris: research and development. Mycological Progress, 11, 599-614. http://dx.doi.org/10.1007/s11557-012-0825-y
50. Singh, S., Ranjan, S., Singh Negi, P. y Arif, M. (2014). Optimization of nutritional necessities for in vitro culture of ophiocordyceps sinensis. International Journal of science and research, 3. https://tinyurl.com/2p8suyb2
51. Song, J., Wang, Y., Teng, M., Cai, G., Xu, H., Guo, H., Liu, Y., Wang, D. y Teng, L. (2015). Studies on the antifatigue activities of Cordyceps militaris fruit body extract in mouse model. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2015/174616
52. Song, X., Bao, M., Li, D. y Li, Y. M. (1999). Advanced glycation in d-galactose induced mouse aging model. Mechanisms of Ageing and Development,
53. 108, 239-251. https://pubmed.ncbi.nlm.nih.gov/10405984/
54. Tuli, H. S., Sandhu, S. S. y Sharma, A. K. (2013). Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech, 4(1), 1-12. https://doi.org/10.1007/s13205-013-0121-9
55. Ukai, S., Kiho, T., Hara, C., Morita, M., Goto, A., Imaizumi, N. y Hasegawa, Y. (1983). Polysaccharides in fungi. XIII. Antitumor activity of various polysaccharides isolated from Dictyophora indusiata, Ganoderma japonicum, Cordyceps cicadae, Auricularia auricula-judae, and Auricularia species. Chemical and Pharmaceutical Bulletin, 31, 741-744. https://doi.org/10.1248/cpb.31.741
56. VitalSetas. (24 de septiembre de 2023). Cordyceps vitalsetas®. https://vitalsetas.com/products/Cordyceps
57. VitalSetas. (2024). Extracto de Cordyceps VitalSetas - 60 gramos. VitalSetas. https://vitalsetas.com/products/extracto-de-cordyceps-vitalsetas-60-gramos?srsltid=AfmBOopcfmdimMC1MAMowz1Vp1A5z_OMy2AQKjbQdBOu4LxCpqvfHoh
58. Wang, D., Zhang, Y., Lu, J., Wang, Y., Wang, J., Meng, Q., Lee, R. J., Wang, D. y Teng, L. (2016). Cordycepin, a natural antineoplastic agent, induces apoptosis of breast cancer cells via caspasedependent pathways. Natural Product Communications, 11(1), 63-68. https://pubmed.ncbi.nlm.nih.gov/26996021/
59. Wang, N., Zhao, Z., Gao, J., Tian, E., Yu, W., Li, H., Zhang, J., Xie, R., Zhao, X. y Chen, A. (2021). Rapid and visual identification of Chlorophyllum molybdites with loop-mediated isothermal amplification method. Front Microbiol, 12. DOI: 10.3389/fmicb.2021.638315
60. Wasser, S. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60, 258-274. https://link.springer.com/ article/10.1007/s00253-002-1076-7
61. Wong, J. H., Ng, T. B., Wang, H., Sze, S. C., Zhang, K. Y, Li, Q. y Lu, X. (2011). Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine, 18, 387-392. https://doi.org/10.1016/j.phymed.2010.07.010
62. Wu, J. Y., Zhang, Q. X. y Leung, P. H. (2007). Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine, 14(1), 43-49. https://doi.org/10.1016/j.phymed.2005.11.005
63. Xiong, C., Xia, Y., Zheng, P., Shi, S. y Wang, C. (2010). Developmental stage-specific gene expression profiling for a medicinal fungus Cordyceps militaris. Mycology, 1(1), 25-66. http://dx.doi.org/10.1080/21501201003674581
64. Xu J. y Xia, Z. (2019). Traditional chinese medicine (TCM) – Does its contemporary business booming and globalization really reconfirm its medical efficacy and safety? Medicine in Drug Discovery, 1, 100003. https://doi.org/10.1016/j.medidd.2019.100003
65. Xu, R. H., Peng, X. E., Chen, G. Z. y Chen, G. L. (1992). Effects of Cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chinese Medical Journal, 105, 97-101. https://pubmed.ncbi.nlm.nih.gov/1597083/
66. Xu, Y. F. (2016). Effect of polysaccharide from Cordyceps militaris (ascomycetes) on physical fatigue induced by forced swimming. International Journal of Medicinal Mushrooms, 18,1083-1092. http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i12.30
67. Yang, F., Wen, Y. B., Bo, M. H. y Peng, Y. (2022). Acupuncture and moxibustion for chronic fatigue syndrome: A systematic review and network metaanalysis. Medicine,101, e29310. https://doi.org/10.1097/md.0000000000029310
68. Yang, L. Y., Huang, W. J., Hsieh, H. G. y Lin, C. Y. (2003). H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL. Journal of Laboratory and Clinical Medicine, 141(1), 74-83. https://doi.org/10.1067/mlc.2003.6
69. Yu, R., Wang, L., Zhang, H., Zhou, C. y Zhao, Y. (2004). Isolation, purification and identification of polysaccharides from cultured Cordyceps militaris. Fitoterapia, 75(7-8), 662-666. http://dx.doi.org/10.1016/j.fitote.2004.06.010
70. Yue, K., Ye, M., Lin, X. y Zhou, Z. (2013). The artificial cultivation of medicinal caterpillar fungus, Ophiocordyceps sinensis (ascomycetes): A review. International Journal of Medicinal Mushrooms, 15, 425-434. DOI: 10.1615/intjmedmushr.v15.i5.10
71. Yue, K., Ye, M., Zhou, Z., Sun, W. y Lin, X. (2012). The genus Cordyceps: a chemical and pharmacological review. Journal of Pharmacy and Pharmacology, 65, 474-493. https://doi.org/10.1111/j.2042-7158.2012.01601.x
72. Zhou, X., Gong, Z., Su, Y., Lin, J. y Tang, K. (2009). Cordyceps fungi: natural products, pharmacological functions and developmental products. The Journal of Pharmacy and Pharmacology, 61, 279-291. http://dx.doi.org/10.1211/jpp.61.03.0002
73. Zhu, J. S., Halpern, G. M. y Jones, K. (1998). The scientific rediscovery of an ancient chinese herbal medicine: Cordyceps sinensis part I. Journal of Alternative and Complementary Medecine, 4, 289-303. DOI: 10.1089/acm.1998.4.3-289
74. Zhu, S., Pan, J., Zhao, B., Liang, J., Wu, Z. Y. y Yang J. J. (2013). Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro. Journal of Ethnopharmacology, 149, 713-719. http://dx.doi.org/10.1016/j.jep.2013.07.037