Autores/as
Resumen
El miedo es una emoción que sirve para la expresión de comportamientos defensivos en situaciones de peligro. Posee un sustrato biológico, con base en el funcionamiento coordinado de los diferentes sistemas orgánicos. Particularmente, el sistema nervioso en su actividad intrínseca genera la vivencia y la acción motriz derivada. En efecto, se ha hallado la intervención de varias estructuras neuroanatómicas como la amígdala e hipotálamo, así como un gran conjunto de moléculas distintas como neurotransmisores y sus receptores. La interacción anatomofuncional causa la emoción. Al igual que se cuenta con la capacidad de producir el miedo, también se puede regular su generación. Para este mecanismo se encuentran determinadas estructuras neuroanatómicas como la corteza prefrontal y orbitofrontal, y sustancias como el GABA y los opiáceos, que inhiben o reducen la actividad en las zonas activas que actúan en el miedo. El equilibrio entre la activación y la inhibición posibilita la ocurrencia del miedo en las circunstancias requeridas y no de una manera descontextualizada o generalizada. En esta revisión se presenta una descripción de diferentes aspectos relevantes en la generación y regulación de la emoción.
Palabras clave:
Citas
Carthy M. La conducta de los animales. 1ra edición. Londres: Salvat; 1964.
Kalin NH. Neurobiología del miedo. Sci Am 1993;268(5):94-101.
Kandel ER, Schwartz JH, Jessel TM. Neurociencia y conducta. 1ra edición. Madrid: Prentice Hall; 1995. pp. 635-652.
Ginas RR. El cerebro y el mito del yo. 1ra edición. Bogotá: Norma; 2003. pp.181-201.
Pinel JPJ. Biopsicología. 4a edición. Madrid: Prentice Hall; 2001. pp. 542-556.
Izquierdo A, Murray EA. Combined Unilateral Lesions of the Amygdala and Orbital Prefrontal Cortex Impair Affective Processing in Rhesus Monkeys. J Neurophysiol 2004;91:2023-2039.
Guimarães-Costa R, Guimarães-Costa MB, Pippa-Gadioli L, Weltson A, Ubiali WA, Paschoalin- Maurin T, et al. Innate defensive behaviour and panic-like reactions evoked by rodents during aggressive encounters with Brazilian constrictor snakes in a complex labyrinth: Behavioural validation of a new model to study affective and agonistic reactions in a prey versus predator paradigm. J Neurosci Methods 2007;165:25-37.
Macrì S, Pasquali P, Bonsignore LT, Pieretti S, Cirulli F, Chiarotti F, et al. Moderate Neonatal Stress Decreases Within-Group Variation in Behavioral, Immune and HPA Responses in Adult Mice. PLoS One 2007;10:e1015.
Christensen JW, Rundgren M. Predator odour per se does not frighten domestic horses. J. applanim 2007;112(1-2):136-145.
Abek K, Niikura Y, Misawa M. The Induction of Long-Term Potentiation at Amygdalo-Hippocampal Synapses in Vivo. Biol Pharm Bull 2003;26(11):1560-2
Carlson NR. Fisiología de la conducta. 6a edición. Barcelona: Ariel Neurociencia; 1999. pp. 405-430.
Barlow DH, Durand VM. Psicopatología. 3ra edición. Massachusets: Paraninfo; 2003. pp. 63-67.
Netter F, Craig J, Perkins J, Hansen J, Koeppen B. Atlas of Neuroanatomy and Neurophysiology. New Jersey: Icon Custom Communication; 2002. p. 69.
Kiernan JA. El sistema nervioso humano. 7a edición. Washington: McGraw- Hill / Interamericana; 1998. pp. 307-311.
Zhu PJ, Stewart RR, McIntosh JM, Weight FF. Activation of Nicotinic Acetylcholine Receptors Increases the Frequency of Spontaneous GABAergic IPSCs in Rat Basolateral Amygdala Neurons. J Neurophysiol 2005;94:3081-3091.
Talarovicova A, Krskova L, Kiss A. Some Assessments of the Amygdala Role in Suprahypothalamic Neuroendocrine Regulation: A Minireview. Endocr Regul 2007;41:155-162.
Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, et al. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 2002;111(6):905-918.
Vaas R. Neurobiología del miedo. Mente y cerebro 2002;1:56-63.
Lehmann H, Treit D, Parent MB. Spared Anterograde Memory for Shock-Probe Fear Conditioning After Inactivation of the Amygdala. Learn Mem 2003;10:261-269.
Bauman MD, Lavenex P, Mason WA, Capitanio JP, Amaral DG. The Development of Mother–Infant Interactions after Neonatal Amygdala Lesions in Rhesus Monkeys. J Neurosci. 2004;24(3):711-721.
Malin ML, McGaugh JL. Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proc Natl Acad Sci USA 2006;103:1959-1963.
Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 2007;11:307-316.
Brandao ML, Zanoveli JM, Ruiz-Martínez RC, Oliveira LC, Landeira-Fernández J. Different patterns of freezing behavior organized in the periaqueductal gray of rats: Association with different types of anxiety. Behav Brain Res 2008;188:1-13.
Calixto AV, Duarte FS, Moraes CKL, Faria MS, De Lima TCM. Nitric oxide involvement and neural substrates of the conditioned and innate fear as evaluated in the T-maze test in rats. Behav Brain Res 2008;189:341-349.
Deyama S, Katayama T, Ohno A, Nakagawa T, Kaneko S, Yamaguchi T, et al. Activation of the beta-Adrenoceptor–Protein Kinase A Signaling Pathway within the Ventral Bed Nucleus of the Stria Terminalis Mediates the Negative Affective Component of Pain in Rats. J Neurosci 2008;28(31):7728-7736.
Meis S, Bergado-Acosta JR, Yanagawa Y, Obata K, Stork O, Munsch T. Identification of a Neuropeptide S Responsive Circuitry Shaping Amygdala Activity via the Endopiriform Nucleus. PLoS One 2008;3(7):e2695.
Madan V, Brennan FX, Mann GL, Horbal AA, Dunn GA, Ross RJ, et al. Long-term effect of cued fear conditioning on REM sleep microarchitecture in rats. Sleep 2008;31(4):497-503.
Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V, et al. Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc Lond B 1998;265:1809-1817.
Kishioka A, Fukushima F, Ito T, Kataoka H, Mori H, Ikeda T, et al. A Novel Form of Memory for Auditory Fear Conditioning at a Low-Intensity Unconditioned Stimulus. PLoS One 2009;4(1):e4157.
Levita L, Hare TA, Voss HU, Glover G, Ballon DJ, Casey BJ. The bivalent side of the nucleus accumbens. Neuroimage 2009;44:1178-1187.
Sevelinges Y, Gervais R, Messaoudi B, Granjon L, Mouly AM. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala. Learn Mem 2004;11:761-769.
LeDoux JE, Farb C, Ruggiero DA. Topographic Organization of Neurons in the Acoustic Thalamus That Project to the Amygdala. J Neurosci 1990;10(4):1043-l054.
LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM. The Lateral Amygdaloid in Fear Conditioning Nucleus. J Neurosci 1990;10(4):1062-1069.
Weisskopf MG, Bauer EP, LeDoux JE. L-Type Voltage-Gated Calcium Channels Mediate NMDA Independent Associative Long-Term Potentiation at Thalamic Input Synapses to the Amygdala. J Neurosci 1999;19(23):10512-10519.
Huang YY, Martin KC, Kandel ER. Both Protein Kinase A and Mitogen-Activated Protein Kinase Are Required in the Amygdala for the Macromolecular Synthesis- Dependent Late Phase of Long-Term Potentiation. J Neurosci 2000;20(17):6317-6325.
Apergis-Schoute AM, De˛biec J, Doyére V, LeDoux JE, Schafe GE. Auditory Fear Conditioning and Long-Term Potentiation in the Lateral Amygdala Require ERK/MAP Kinase Signaling in the Auditory Thalamus: A Role for Presynaptic Plasticity in the Fear System. J Neurosci 2005;25:5730-5739.
Pan BX, Vautier F, Ito W, Bolshakov VY, Morozov A. Enhanced Cortico- amygdala Efficacy and Suppressed Fear in Absence of Rap1. J Neurosci 2008;28(9):2089-2098.
LeDoux JE, Iwata J, Cicchetti P, and Reis DJ. Different Projections of the Central Amygdaloid Nucleus Mediate Autonomic and Behavioral Correlates of Conditioned Fear. J Neurosci 1988;8:2517-2529.
Shimizu G, Nobre MJ, Carvalho MC, Brandão ML. Substance P injected into the dorsal periaqueductal gray causes anxiogenic effects similar to the long-term isolation as assessed by ultrasound vocalizations measurements. Behav Brain Res 2007;187:301-307.
Takahashi LK, Chan MM, Pilar ML. Predator odor fear conditioning: Current perspectives and new directions. Neurosci Biobehav Rev 2008;32(7):1218-1227.
Nader K, Majidishad P, Amorapanth P, LeDoux JE. Damage to the Lateral and Central, but Not Other, Amygdaloid Nuclei Prevents the Acquisition of Auditory Fear Conditioning. Learn Mem 2001;8:156-163.
Humeau Y, Reisel D, Johnson AW, Borchardt T, Jensen V, Gebhardt C, et al. A Pathway-Specific Function for Different AMPA Receptor Subunits in Amygdala Long-Term Potentiation and Fear Conditioning. J Neurosci 2007;27(41):10947-10956.
Álvarez RP, Biggs A, Chen G, Pine DS, Grillon C. Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions. J Neurosci 2008;28(24):6211-6219.
Wilensky AE, Schafe GE, LeDoux JE. Functional Inactivation of the Amygdala before But Not after Auditory Fear Conditioning Prevents Memory Formation. J Neurosci 1999;19:1-5.
Wilensky AE, Schafe GE, LeDoux JE. The Amygdala Modulates Memory Consolidation of Fear-Motivated Inhibitory Avoidance Learning But Not Classical Fear Conditioning. J Neurosci 2000;20:7059-7066.
Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE. Rethinking the Fear Circuit: The Central Nucleus of the Amygdala Is Required for the Acquisition, Consolidation, and Expression of Pavlovian Fear Conditioning. J Neurosci 2006;48:12387-12396.
Feyder M, Wiedholz L, Sprengel R, Holmes A. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors. Front Behav Neurosci 2007;1:1-4.
Nelovkov A, Sütt S, Raud S, Vasar E, Kõks S. Screen for genes in periaqueductal grey of male Wistar rats related to reduced exploratory activity in the elevated plus-maze. Behav Brain Res 2007;183:8-17.
Baratta MV, Lucero TR, Amat J, Watkins LR, Maier SF. Role of the ventral medial prefrontal cortex in mediating behavioral control-induced reduction of later conditioned fear. Learn Mem 2008;15:84-87.
Cabral A, Ruggiero RN, Nobre MJ, Brandão ML, Castilho VM. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine. Prog Neuropsychopharmacol Biol Psychiatry 2008;12:1-47.
Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ. Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci USA 2008;105(33):12004-12009.
Vidal-González I, Vidal-González B, Rauch SL, Quirk GJ. Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 2006;13:728-733.
Smith CD, Lonstein JS. Contact with infants modulates anxiety-generated c-fos activity in the brains of postpartum rats. Behav Brain Res 2008;190:193-200.
Runyan JD, Moore AN, and Dash PK. A Role for Prefrontal Cortex in Memory Storage for Trace Fear Conditioning. J Neurosci 2004; 24:1288-1295.
Blum S, Runyan JD, Dash PK. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning. BMC Neurosci 2006;7(67):1-10.
Kalisch R, Holt B, Petrovic P, De Martino B, Klöppel S, Büchel C, et al. The NMDA Agonist D-Cycloserine Facilitates Fear Memory Consolidation in Humans. Cereb Cortex 2009;19:187-196.
Maroun M, Richter-Levin G. Exposure to Acute Stress Blocks the Induction of Long-Term Potentiation of the Amygdala–Prefrontal Cortex Pathway In Vivo. J Neurosci 2003;23(11):4406-4409.
Pezze MA, Bast T, Feldon J. Significance of Dopamine Transmission in the Rat Medial Prefrontal Cortex for Conditioned Fear. Cereb Cortex 2003;13:371-380.
Hebert AE, Dash PK. Plasticity in the Entorhinal Cortex Suppresses Memory for Contextual Fear. J Neurosci 2004;24(45):10111-10116.
Zubieta JK, Ketter TA, Bueller JA, Xu Y, Kilbourn MR, Young EA, et al. Regulation of Human Affective Responses by Anterior Cingulate and Limbic μ-Opioid Neurotransmission. Arch Gen Psychiatry 2003;60:1145-1153.
Berthoz S. La alexitimia. Mente y cerebro 2005;10:36-39.
Furtak SC, Allen TA, Brown TH. Single-Unit Firing in Rat Perirhinal Cortex Caused by Fear Conditioning to Arbitrary and Ecological Stimuli. J Neurosci 2007;27(45):12277-12291.
Maren S, Fanselow MS. Synaptic Plasticity in the Basolateral Induced by Amygdala Hippocampal Formation Stimulation in viva. J Neurosci 1995;15(11):7546-7564.
Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross CT. Increased Fear Response to Contextual Cues in Mice Lacking the 5-HT1A Receptor. Neuropsychopharmacology 2006;31:101-111.
Fujio J, Hosono H, Ishiguro K, Ikegami S, Fujita SC. Tau phosphorylation in the mouse brain during aversive conditioning. Neurochem Int 2007;51:200-208.
Heldt SA, Stanek L, Chhatwal JP, Ressler KJ. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 2007;12:656-670.
Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, Radulovic J, et al. A hippocampal Cdk5 pathway regulates extinction of contextual Fear. Nat Neurosci 2007;10(8):1012-1019.
Bergado-Acosta JR, Sangha S, Narayanan RT, Obata K, Pape HC, Stork O. Critical role of the 65-kDa isoform of glutamic acid decarboxylase in consolidation and generalization of Pavlovian fear memory. Learn Mem 2008;15:163-171.
Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cina I, Aceti M, et al. The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory. PLoS Biol 2008;6:2188-2204.
Olivera-López JI, Molina-Hernández M, Téllez-Alcántara NP, Jaramillo MT. Estradiol and neuropeptide Y (intra-lateral septal) reduce anxiety-like behavior in two animal models of anxiety. J Peptides 2008;2:1-25.
Kitabatake Y, Hikida T, Watanabe D, Pastan I, Nakanishi S. Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc Natl Acad Sci USA 2003;100(13):7965-7970.
Fraga Lopes AP, Cunha IC, Murilo Steffens S, Feraz A, Cordova Vargas J, Monteiro de Lima TC, et al. GABAA and GABAB agonist microinjections into medial accumbens shell increase feeding and induce anxiolysis in an animal model of anxiety. Behav Brain Res 2007;184(2):142-149.
Schafe GE, Doye`re V and LeDoux JE. Tracking the Fear Engram: The Lateral Amygdala Is an Essential Locus of Fear Memory Storage. J Neurosci 2005;25(43):10010-10015.
Cohen JD, Castro-Alamancos MA. Early Sensory Pathways for Detection of Fearful Conditioned Stimuli: Tectal and Thalamic Relays. J Neurosci 2007;27(29):7762-7776.
Preisser EL, Bolnick DI. The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations. PLoS One 2008;3(6):e2465.
Waldbaum S, Hadziefendic S, Erokwu B, Zaidi SIA, Haxhiu MA. CNS innervation of posterior cricoarytenoid muscles: a transneuronal labeling study. Respir Physiol 2001;126:113-125.
Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci USA 2008;105(2):769-774.
Koboroff A, Kaplan G, Rogers LJ. Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Res Bull 2008;76(3):304-310.
Siniscalchi M, Quaranta A, Rogers LJ. Hemispheric Specialization in Dogs for Processing Different Acoustic Stimuli. PLoS One 2008;3(10):e3349.
Kaiser J, Lutzenberger W, Ackermann H, Birbaumer N. Dynamics of Gamma-band Activity Induced by Auditory Pattern Changes in Humans. Cereb Cortex 2002;12:212-221.
Carola V, Frazzetto G, Pascucci T, Audero E, Puglisi-Allegra S, Cabib S, et al. Identifying Molecular Substrates in a Mouse Model of the Serotonin Transporter_Environment Risk Factor for Anxiety and Depression. Biol Psychiatry 2008;63:840-846.
Vazdarjanova A, McGaugh JL. Basolateral Amygdala Is Involved in Modulating Consolidation of Memory for Classical Fear Conditioning. J Neurosci 1999;15:6615-6622.
Miyakawa T, Yamada M, Duttaroy A, Wess J. Hyperactivity and Intact Hippocampus-Dependent Learning in Mice Lacking the M1 Muscarinic Acetylcholine Receptor. J Neurosci 2001;21(14):5239-5250.
Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther 2007;115:116-147.
Rubio M, Fernández-Ruiz J, de Miguel R, Maestro B, Walker JM, Ramos JA. CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats. Neuropharmacology 2008;54:976-988.
Pibiri F, Nelson M, Guidotti A, Costa E, Pinna G. Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: A model relevant for posttraumatic stress disorder. Proc Natl Acad Sci USA 2008;105(14):5567-5572.
Reznikov LR, Reagan LP, Fadel JR. Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res 2009;1256:61-8.
Faure A, Reynolds SM, Richard JM, Berridge KC. Mesolimbic Dopamine in Desire and Dread: Enabling Motivation to Be Generated by Localized Glutamate Disruptions in Nucleus Accumbens. J Neurosci 2008;28(28):7184-7192.
Janitzky K, Linke R, Yilmazer-Hanke DM, Grecksch G, Schwegler H. Disrupted visceral feedback reduces locomotor activity and influences background contextual fear conditioning in C57BL/6JOlaHsd mice. Behav Brain Res 2007;182:109-118.
Mueller D, Porter JT and Quirk GJ. Noradrenergic Signaling in Infralimbic Cortex Increases Cell Excitability and Strengthens Memory for Fear Extinction. J Neurosci 2008;28(2):369-375.
Álvarez EO, Álvarez PA. Motivated exploratory behaviour in the rat: The role of hippocampus and the histaminergic neurotransmission. Behav Brain Res 2008;186(1):118-25.
Jia F, Mobarakeh JI, Dai H, Kato M, Xu A, Okuda T, et al. Blocking Histamine H1 Improves Learning and Mnemonic Dysfunction in Mice With Social Isolation Plus Repeated Methamphetamine Injection. J Pharmacol Sci 2008;107:167-174.
Huang YY and Kandel ER. 5-Hydroxytryptamine Induces a Protein Kinase A/ Mitogen-Activated Protein Kinase-Mediated and Macromolecular Synthesis-Dependent Late Phase of Long-Term Potentiation in the Amygdala. J Neurosci 2007;27(12):3111-3119.
Albrechet-Souza L, Carvalho MC, Rodrigues Franci C, Brandão ML. Increases in plasma corticosterone and stretched-attend postures in rats naive and previously exposed to the elevated plus-maze are sensitive to the anxiolytic-like effects of midazolam. Hormon Behav 2007;52:267-273.
Stüber D, Luck M, Roth G. El cerebro agresivo. Mente y cerebro 2007;22:60-66.
Frisch C, Dere E, De Souza Silva MA, Gödecke A, Schrader J, Huston JP. Superior Water Maze Performance and Increase in Fear-Related Behavior in the Endothelial Nitric Oxide Synthase-Deficient Mouse Together with Monoamine Changes in Cerebellum and Ventral Striatum. J Neurosci 2000;20(17):6694-6700.
Ragnauth A, Schuller A, Morgan M, Chan J, Ogawa S, Pintar J, et al. Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci USA 2001;98(4):1958-1963.
Frankland PW, Josselyn SA, Bradwejn J, Vaccarino FJ, Yeomans JS. Activation of Amygdala Cholecystokinin B Receptors Potentiates the Acoustic Startle Response in the Rat. J Neurosci 1997;17(5):1838-1847.
Tiba PA, Oliveira MGM, Rossi VC, Tufik S, Suchecki D. Glucocorticoids Are Not Responsible forParadoxical Sleep Deprivation-Induced Memory Impairments. Sleep 2008;31(4):505-515.
Chhatwal JP, Davis M, Maguschak KA, Ressler KJ. Enhancing Cannabinoid Neurotransmission Augments the Extinction of Conditioned Fear. Neuropsychopharmacology 2005;30:516-524.
Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity During Extinction of Conditioned Fear in Mice. Learn Mem 2004;11:625-632.
Bauer EP, Schafe GE, LeDoux JE. NMDA Receptors and L-Type Voltage-Gated Calcium Channels Contribute to Long-Term Potentiation and Different Components of Fear Memory Formation in the Lateral Amygdala. J Neurosci 2002;22(12):5239-5249.
Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M. Increased Thresholds for Long-Term Potentiation and Contextual Learning in Mice Lacking the NMDA-type Glutamate Receptor ε1 Subunit. J Neurosci 1998;18(17):6704-6712.
Rodrigues SM, Schafe GE, LeDoux JE. Intra-Amygdala Blockade of the NR2B Subunit of the NMDA Receptor Disrupts the Acquisition But Not the Expression of Fear Conditioning. J Neurosci 2001;21(17):6889-6896.
Shi SH, Hayashi Y, Esteban JA, Malinow R. Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons. Cell 2001;105:331-343.
Rumpel S, LeDoux JE, Zador A, Malinow R. Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning. Science 2005;308:83-88.
Wu LJ, Ren M, Wang H, Kim SS, Cao X, Zhuo M. Neurabin Contributes to Hippocampal Long-Term Potentiation and Contextual Fear Memory. PLoS One 2008;3(1):e1407.
Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE. The Group I Metabotropic Glutamate Receptor mGluR5 Is Required for Fear Memory Formation and Long-Term Potentiation in the Lateral Amygdala. J Neurosci 2002;22(12):5219-5229.
Stackman Jr RW, Bond CT, Adelman JP. Contextual memory deficits observed in mice overexpressing small conductance Ca2+-activated K+ type 2 (KCa2.2, SK2) channels are caused by an encoding deficit. Learn Mem 2008;15(4):208-213.
Cain CK, Blouin AM, Barad M. Adrenergic Transmission Facilitates Extinction of Conditional Fear in Mice. Learn Mem 2004;11:179-187.
Norris EH, Strickland S. Modulation of NR2B regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc Natl Acad Sci USA 2007;104(33):13473-13478.
Almonte AG, Hamill CE, Chhatwal JP, Wingo TS, Barber JA, Lyuboslavsky PN, et al. Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiol Learn Mem 2007;88:295-304.
Barnes P, Thomas KL. Proteolysis of proBDNF is a Key Regulator in the Formation of Memory. PLoS One 2008;3(9):e3248.
Lang UE, Günther L, Scheuch K, Klein J, Eckhart S, Hellweg R, et al. Higher BDNF concentrations in the hippocampus and cortex of an aggressive mouse strain. Behav Brain Res 2009;197:246-249.
Chen J, Kitanishi T, Ikeda T, Matsuki N, Yamada MK. Contextual learning induces an increase in the number of hippocampal CA1 neurons expressing high levels of BDNF. Neurobiol Learn Mem 2007;88(4):409-15.
Chourbaji S, Hellweg R, Brandis D, Zörner B, Zacher C, Lang UE, et al. Mice with reduced brainderived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Brain Mol Res 2004;121:28-36.
Ansiedad [Medilegis]. Revista Tribuna Médica 2001;101(5):19-24.
Mitra R, Sapolsky RM. Acute corticosterona treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci USA 2008;105(14):5573-5578.
Champagne DL, Bagot RC, Hasselt F, Ramakers G, Meaney MJ, Kloet ER, et al. Maternal Care and Hippocampal Plasticity: Evidence for Experience-Dependent Structural Plasticity, Altered Synaptic Functioning, and Differential Responsiveness to Glucocorticoids and Stress. J Neurosci 2008;28(23):6037- 6045.
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder. Proc Natl Acad Sci USA 1998;95:14476-14481.
Guijarro JZ, Tiba PA, Ferreira TL, Kawakami SE, Oliveira MGM, Suchecki D. Effects of brief and long maternal separations on the HPA axis activity and the performance of rats on context and tone fear conditioning. Behav Brain Res 2007;184(2):101-108.
Gagliano H, Fuentes S, Nadal R, Armario A. Previous exposure to immobilisation and repeated exposure to a novel environment demonstrate a marked dissociation between behavioral and pituitary–adrenal responses. Behav Brain Res 2008;187:239-245.
Hirao K, Hata Y, Ide N, Takeuchi M, Irie M, Yao I, et al. A Novel Multiple PDZ Domain-containing Molecule Interacting with N-Methyl-D-aspartate Receptors and Neuronal Cell Adhesion Proteins. J Biol Chem 1998;273(33):21105-21110.
Levinson JN, Chéry N, Huang K, Wong TP, Gerrow K, Kang R, et al. Neuroligins Mediate Excitatory and Inhibitory Synapse Formation. J Biol Chem 2005;280(17):17312-17319.
Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, et al. Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2. Neuron 2007;54:919-931.
Kim JH, Richardson R. The Effect of Temporary Amygdala Inactivation on Extinction and Reextinction of Fear in the Developing Rat: Unlearning as a Potential Mechanism for Extinction Early in Development. J Neurosci 2008;28(6):1282-1290.