Cómo citar
Tafurt Cardona, Y., & Marin Morales, M. A. (2014). Principales mecanismos de reparación de daños en la molécula de ADN. Biosalud, 13(2), 95–110. Recuperado a partir de https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4676

Autores/as

Yaliana Tafurt Cardona
Universidad Estadual Paulista "Júlio de Mesquita Filho" - campus de Rio Claro/SP
mamm@rc.unesp.br
Maria Aparecida Marin Morales
Universidad Estadual Paulista "Júlio de Mesquita Filho"- campus de Rio Claro/SP
mamm@rc.unesp.br

Resumen

Las células cuentan con mecanismos complejos que vigilan la integridad del ADN, activando mecanismos de reparación cuando hay deficiencias o errores durante la replicación. Una consecuencia potencial de los daños son las alteraciones permanentes en la estructura del ADN que pueden generar mutaciones, transformación carcinogénica y muerte celular. Estos son atribuidos a diferentes agentes endógenos como los radicales libres de oxígeno (RLO) provenientes de la respiración, los cuales son considerados el centro de la carcinogénesis y el envejecimiento por daño genómico; agentes exógenos como la luz ultravioleta que inducen dímeros de pirimidina y la radiación ionizante que produce una gran variedad de daños sobre las bases, muchos de ellos por efecto indirecto.  También se encuentran las genotoxinas presentes en los alimentos, humo de tabaco y agentes quimioterapéuticos, con grandes cualidades para alterar la estructura de la molécula ADN e interferir con su expresión. De esta manera, cerca de 105 lesiones espontáneas por día son inducidas en nuestros genes, en donde los mecanismos de reparación detectan daños y perturbaciones durante el crecimiento y división celular. Esto es posible gracias a las funciones específicas de reconocimiento, corrección o eliminación de daños que asegura la integridad del genoma. En este artículo se presentan los principales mecanismos de reparación del ADN, su relación y activación de acuerdo al tipo de daño.

Chang DJ, Cimprich KA. DNA damage tolerance: when it’s OK to make mistakes. Nat Chem Biol 2009; 5(2):82-90.

Poirier MC, Weston A. DNA Damage, DNA Repair, and Mutagenesis. In: Joseph R. Bertino, editor. Encyclopedia of Cancer. Second Edition. New York: Academic Press; 2002. p. 79-87.

Watson NB, McGregor WG. Cellular Responses to DNA Damage. In: Charlene A. McQueen, editor. Comprehensive Toxicology. Second Edition. Oxford: Elsevier; 2010. p. 377-402.

Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711(1-2):193-201.

Hartwig A, Schwerdtle T. Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicology Letters 2002; 127(1-3):47-54.

Hoeijmakers JHJ. DNA damage, aging, and cancer. N Engl J Med 2009; 361(15):1475-85.

O’Connor MJ, Martin NMB, Smith GCM. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 2007; 26(56):7816-24.

Harper JW, Elledge SJ. The DNA Damage Response: Ten Years After. Molecular Cell 2007; 28(5):739-45.

Wilson III DM, Wong H-K, McNeill DR, Fan J. DNA Repair. In: Geoffrey J. Laurent, Steven D. Shapiro, editors. Encyclopedia of Respiratory Medicine. Oxford: Academic Press; 2006. p. 30-37.

Agnez-Lima LF, Medeiros SRB, Marquez RCP, Pinheiro MM, Menck CFM. Processos de reparo de DNA: garantindo a estabilidade do material genético. In: Valter Kuchenbecker, Director. Mutagênese Ambiental. 1st ed. Universidade Luterana do Brasil: ULBRA; 2003. p. 49-80.

Thompson CL, Sancar A. Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogen 2002; 21(58):9043-56.

Deisenhofer J. DNA photolyases and cryptochromes. Mutat Res 2000; 460(3-4):143-9.

Thiagarajan V, Villette S, Espagne A, Eker APM, Brettel K, Byrdin M. DNA repair by photolyase: a novel substrate with low background absorption around 265 nm for transient absorption studies in the UV. Biochemistry 2010; 49(2):297-303.

Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu Rev Biochem 2000; 69:31-67.

Hazlehurst LA, Dalton WS. De Novo and Acquired Resistance to Antitumor Alkylating Agents. In: Teicher BA, editor. Cancer Drug Resistance. Humana Press; 2006. p. 377-89.

Margison GP, Povey AC, Kaina B, Koref S, F M. Variability and Regulation of O6-Alkylguanine-DNA Alkyltransferase. Carcinogenesis 2003; 24(4):625-35.

Pegg AE, Dolan ME, Moschel RC. Structure, Function, and Inhibition of O6-Alkylguanine-DNA Alkyltransferase. Progress in Nucleic Acid Research and Molecular Biology. Academic Press; 1995. p. 167-223.

Nakamura J, Mutlu E, Sharma V, Collins L, Bodnar W, Yu R, et al. The endogenous exposome. DNA Repair (Amst) 2014. p. 3-13.

Barnes DE, Lindahl T. Repair and Genetic Consequences of Endogenous DNA Base Damage in Mammalian Cells. Annual Review of Genetics 2004; 38(1):445-76.

Sedgwick B, Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage. Oncogene 2002; 21(58):8886-94.

Duncan T, Trewick SC, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases. Proc Natl Acad Sci USA 2002; 99(26):16660-5.

Drabløs F, Feyzi E, Aas PA, Vaagbø CB, Kavli B, Bratlie MS, et al. Alkylation damage in DNA and RNArepair mechanisms and medical significance. DNA Repair (Amst) 2004; 3(11):1389-407.

Aas PA, Otterlei M, Falnes PO, Vågbø CB, Skorpen F, Akbari M, et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 2003; 421(6925):859-63.

Yang C-G, Garcia K, He C. Damage Detection and Base Flipping in Direct DNA Alkylation Repair. Chembiochem 2009; 10(3):417-23.

Subba Rao K, Loeb LA. DNA damage and repair in brain: relationship to aging. Mutation Research/DNAging 1992; 275(3-6):317-29.

Friedberg EC. DNA damage and repair. Nature 2003; 421(6921):436-40.

Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411(6835):366-74.

Brooks B, O’Brien TJ, Ceryak S, Wise JP, Wise SS, Wise JP, et al. Excision repair is required for genotoxin-induced mutagenesis in mammalian cells. Carcinogenesis 2008; 29(5):1064-9.

Schärer OD, Jiricny J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. BioEssays 2001; 23(3):270-81.

Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology 2003; 193(1-2):3-34.

Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13(10):659-71.

Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, et al. AP EndonucleaseIndependent DNA Base Excision Repair in Human Cells. Molecular Cell 2004; 15(2):209-20.

Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 2003; 531(1-2):231-51.

Hakem R. DNA-damage repair; the good, the bad, and the ugly. The EMBO Journal 2008; 27(4):589-605.

Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, et al. Completion of base excision repair by mammalian DNA ligases. In: Kivie Moldave SM, editor. Progress in Nucleic Acid Research and Molecular Biology. Academic Press; 2001. p. 151-64.

Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and cancer. J Mol Histol 2006; 37(5-7):225-38.

Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic Nucleotide Excision Repair: The UvrABC System. Chem Rev 2006; 106(2):233-52.

Truglio JJ, Karakas E, Rhau B, Wang H, DellaVecchia MJ, Van Houten B, et al. Structural basis for DNA recognition and processing by UvrB. Nat Struct Mol Biol 2006; 13(4):360-4.

Kad NM, Wang H, Kennedy GG, Warshaw DM, Van Houten B. Collaborative Dynamic DNA Scanning by Nucleotide Excision Repair Proteins Investigated by Single-Molecule Imaging of Quantum-DotLabeled Proteins. Mol Cell 2010; 37(5):702-13.

Wood RD, Mitchell M, Lindahl T. Human DNA repair genes, 2005. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005; 577(1-2):275-83.

Modrich P, Lahue R. Mismatch Repair in Replication Fidelity, Genetic Recombination, and Cancer Biology. Annual Review of Biochemistry 1996; 65(1):101-33.

Harfe BD, Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet 2000; 34:359-99.

Fukui K. DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids 2010, 1-16.

Schaaper RM. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 1993; 268(32):23762-5.

Hsieh P. Molecular mechanisms of DNA mismatch repair. Mutation Research/DNA Repair 2001; 486(2):71-87.

Orozco MC, Farías R, Loeza P, Santoyo G. Cancer: The importance of repairing DNA double strand breaks and perspectives from the pharmacogenomics. Revista Mexicana de Ciencias Farmacéuticas 2010; 2:7-14.

Lips J, Kaina B. DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts. Carcinogenesis 2001; 22(4):579-85.

Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature 2000; 407(6805):777-83.

Lieberman HB. DNA damage repair and response proteins as targets for cancer therapy. Curr Med Chem 2008; 15(4):360-7.

Haber JE. Partners and pathways: repairing a double-strand break. Trends in Genetics 2000; 16(6):259-64.

Pâques F, Haber JE. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1999; 63(2):349-404.

Thompson LH, Schild D. Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 2001; 477(1-2):131-53.

Frankenberg-Schwager M, Gebauer A, Koppe C, Wolf H, Pralle E, Frankenberg D. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Radiat Res 2009; 171(3):265-73.

Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9(10):759-69.

Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27(3):247-54.

Iijima K, Ohara M, Seki R, Tauchi H. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. J Radiat Res 2008; 49(5):451-64.

D’Amours D, Jackson SP. The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3(5):317-27.

Aylon Y, Kupiec M. DSB repair: the yeast paradigm. DNA Repair (Amst) 2004; 3(8-9):797-815.

Conway AB, Lynch TW, Zhang Y, Fortin GS, Fung CW, Symington LS, et al. Crystal structure of a Rad51 filament. Nat Struct Mol Biol 2004; 11(8):791-6.

Van Komen S, Petukhova G, Sigurdsson S, Stratton S, Sung P. Superhelicity-Driven Homologous DNA Pairing by Yeast Recombination Factors Rad51 and Rad54. Molecular Cell 2000; 6(3):563-72.

Li X, Heyer W-D. RAD54 controls access to the invading 3’-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res 2009; 37(2):638-46.

Constantinou A, Davies AA, West SC. Branch Migration and Holliday Junction Resolution Catalyzed by Activities from Mammalian Cells. Cell 2001; 104(2):259-68.

Cahill D, Connor B, Carney JP. Mechanisms of eukaryotic DNA double strand break repair. Front Biosci 2006; 11:1958-76.

Hammarsten O, DeFazio LG, Chu G. Activation of DNA-dependent protein kinase by single-stranded DNA ends. J Biol Chem 2000; 275(3):1541-50.

Maser RS, Monsen KJ, Nelms BE, Petrini JH. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 1997; 17(10):6087-96.

Gunn A, Bennardo N, Cheng A, Stark JM. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context. J Biol Chem 2011; 286(49):42470-82.

Rodríguez-Beltrán J, Rodríguez-Rojas A, Guelfo JR, Couce A, Blázquez J. The Escherichia coli SOS Gene dinF Protects against Oxidative Stress and Bile Salts. PLoS One 2012; 7(4).

Gaziev AI. Low efficiency of repair of critical DNA damage induced by low doses of radiation. Radiats Biol Radioecol 2011; 51(5):512-29.

Janion C. Inducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli. International Journal of Biological Sciences 2008; 4(6):338-44.

Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, et al. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 2000; 35(6):1560-72.

Sutton MD, Smith BT, Godoy VG, Walker GC. The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 2000; 34:479-97.

Sermet JH, Breña M, Espinosa J. La respuesta SOS en Escherichia coli. Revista Especializada en Ciencias Químico-Biológicas 2005; 8(2):99-105.

Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 2001; 158(1):41-64.

Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 2002; 511(2):145-78.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |