DOI: 10.17151/biosa.2016.15.1.6
Cómo citar
Aristizábal, W. ., Eraso, M. F. ., Alzate, L. H. ., Cruz, J. ., & Pedraza, F. J. . (2016). Caracterización de neoplasias mamarias mediante espectroscopia de impedancia eléctrica: modelo canino. Biosalud, 15(1), 50–61. https://doi.org/10.17151/biosa.2016.15.1.6

Autores/as

William Aristizábal
Universidad de Caldas
william.aristizabal@ucaldas.edu.co
http://orcid.org/0000-0003-0482-2805
María F. Eraso
Universidad de Caldas
mariafemvz@gmail.com
http://orcid.org/0000-0003-4227-3616
Luis H. Alzate
Universidad de Caldas
halzate@ucaldas.edu.co
http://orcid.org/0000-0003-3440-6933
Jorge Cruz
Universidad Nacional de Colombia
jmcrusa@unal.edu.co
http://orcid.org/0000-0001-6041-9311
Francisco J. Pedraza
Universidad de Caldas
fpedraza@ucaldas.edu.co
http://orcid.org/0000-0002-3217-8941

Resumen

Introducción: La espectroscopia de impedancia eléctrica (EIE) es una técnica fácil de usar y de bajo costo que se puede utilizar para analizar tejidos biológicos en condiciones normales o patológicas. El objetivo de este trabajo fue caracterizar neoplasias de glándula mamaria benignas y malignas aplicando la técnica EIE en muestras extraídas de 45 caninos hembras (Canis lupus familiaris). Métodos: Se utilizó un medidor de impedancia eléctrica, Hioki 3532-50, para determinar los parámetros bioeléctricos: resistencia de la matriz extracelular (R), resistencia de la matriz intracelular (S), frecuencia característica (Fc) y capacitancia de membrana (Cm) en un rango de frecuencias entre 42 Hz y 5 MHz y se analizaron estadísticamente mediante la prueba no paramétrica U de Mann-Whitney (Wilcoxon) de dos colas. La precisión diagnóstica de la EIE se efectuó a través de curvas características de operación del receptor (COR) y tablas de doble entrada, con la histopatología como referencia. Resultados: Se encontraron diferencias estadísticamente significativas entre el tejido mamario sano y las neoplasias benignas para los parámetros R, Fc y Cm, p-value < 0,05. Entre tejido mamario sano y neoplasias mamarias malignas se encontraron diferencias estadísticamente significativas para R y Fc con un p-value < 0,05. La comparación entre lesiones tumorales benignas y malignas no presentó diferencias estadísticamente significativas, p-value > 0,05, para ninguna de las variables incluidas en este estudio. Conclusiones: De los parámetros analizados por EIE, la resistencia de la matriz extracelular es la que mejor permite diferenciar entre tejidos mamarios normales y neoplásicos. La EIE es una herramienta diagnóstica potencial que puede ser utilizada en la detección de cáncer mamario, con una precisión diagnóstica cercana al 80%.

1. Kumaraguruparan R, Prathiba D, Nagini S. Of humans and canines: Immunohistochemical analysis of PCNA, Bcl-2, p53, cytokeratin and ER in mammary tumors. Research in Veterinary Science 2006; 81(2):218-224.

2. Granados S, Quiles J, Gil A, Ramírez M. Lípidos de la dieta y cáncer. Nutrición Hospitalaria 2006; 21(2):44-54.

3. Vázquez T, Barrios E, Cataldi S, Vázquez A, Alonso R, Estellano F, et al. Análisis de sobrevida de una población con cáncer de mama y su relación con factores pronósticos: estudio de 1.311 pacientes seguidas durante 230 meses. Revista Médica del Uruguay 2005; 21(2):107-121.

4. Meuten DJ. Tumors in domestic animals. 4 ed. Ames, Iowa, USA: Iowa State Press; 2002.

5. Hermo G, Ripoll G, Lorenzano P, Farina H, Gabri M, Turik E, et al. Tumores de mama en la perra. Ciencia Veterinaria 2005; 7(1):1515-1883.

6. De Nardi A, Rodasky S, Sousa R, Costa T, Macedo T, Rodigheri S, et al. Prevalência de neoplasias e modalidades de tratamentos em cães, atendidos no Hospital Veterinário da Universidade Federal do Paraná. Archives of Veterinary Science 2002; 7(2):15-26.

7. Sorenmo K. Canine mammary gland tumors. The veterinary clinics small animal practice 2003; 33(3):573-596.

8. Nambiar PR, Boutin SR, Raja R, Rosenberg DW. Global gene profiling: a complement to conventional histopathological analysis of neoplasia. Veterinary Pathology 2005; 42(6):735-752.

9. Grimnes S, Martinsen O. Bioimpedance and Bioelectricity Basics. 2 ed. Great Britain: Elsevier; 2008.

10. Zou Y, Guo Z. A review of electrical impedance techniques for breast cancer detection. Medical engineering & physics 2003; 25(2):79-90.

11. Andrade F, Figueiroa F, Bersano P, Bissacot D, Rocha N. Malignant mammary tumor in female dogs: environmental contaminants. Diagnostic Pathology 2010; 5(45):1-5.

12. Okazaki K, Tangoku A, Morimoto T, Kotani R, Yasuno E, Akutagawa M, Kinouchi Y. Basic study of a diagnostic modality employing a new impedance electrical tomography (EIT) method for noninvasive measurement in localized tissues. The journal of medical investigation 2010; 57(3-4):205-218.

13. Malich A, Böhm T, Facius M, Kleinteich I, Fleck M, Sauner D, Anderson R, Kaiser W. Electrical impedance scanning as a new imaging modality in breast cancer detection a short review of clinical value on breast application, limitations and perspectives. Nuclear instruments and methods in physics research 2003; 497(1):75-8.

14. Brown B, Tidy J, Boston K, Blackett A, Smallwood R, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. The Lancet 2000; 355(9207):892-895.

15. Misdorp W, Else R, Hellmén E, Lipscomb T. Histological classification of mammary tumors of the dog and the cat. 2nd series. Washington (DC): Armed Forces Institute of Pathology and World Health Organization; 1999. p. 11-25.

16. Caicedo M, Rojas J, Betancourt S, Aristizábal W, Chavarro J. Algoritmos genéticos difusos para el ajuste del modelo de cole-cole. 4to Congreso Colombiano de Computación; 2009.

17. Olarte-Echeverri G, Aristizábal-Botero W, Gallego-Sánchez PA, Rojas-Díaz J, Botero BE, Osorio GF. Detección precoz de lesiones intraepiteliales del cuello uterino en mujeres de Caldas-Colombia mediante la técnica de espectroscopia de impedancia eléctrica. Revista colombiana de obstetricia y ginecología 2007; 58(1).

18. Dawson B, Trapp R. Bioestadística médica. 4 ed. México: Manual moderno; 2005.

19. Bourne JR (ed). Bioelectrical impedance techniques in medicine. Critical Reviews in Biomedical Engineering 1996; 24(4-6).

20. Wang K, Dong X, Fu F, et al. A primary research of the relationship between breast tissues impedance spectroscopy and electrical impedance scanning. Bioinformatics and Biomedical Engineering. Or in: The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai. China. 2008. p. 1575-1579.

21. Han K, Han A, Frazier A. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosensors and bioelectronics 2006; 21(10):1907-1914.

22. Han A, Yang L, Frazier A. Quantification of the heterogeneity in breast cancer cell lines using wholecell impedance spectroscopy. Clinical cancer research 2007; 13(1):139-143.

23. Kerner T, Paulsen K, Hartov A, Shojo S, Poplack S. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. Transactions on medical imaging 2002; 21(6):638-645.

24. Jossinet J, Lobel A, Michoudet C, Schimitt M. Quantitative technique for bioelectrical spectroscopy. Journal of Biomedical Engineering 1985; 7(4):289-294.

25. Jossinet J. Variability of impedivity in normal and pathological breast tissue. Medical and biological engineering and computing 1996; 34(5):346-350.

26. Jossinet J. The impedivity of freshly excised human breast tissue. Physiological measurement 1998; 19(1):61- 75.

27. Jossinet J, Schimitt M. A review of parameters for the bioelectrical characterization of breast tissue. Annals of the New York academy of sciences 1999; 843:30-41.

28. Andrews R, Mah R, Guerrero M, Papasin R, Reed C. The NASA smart probe Project for real-time multiple microsensor tissue recognition: update. International Congress Series 2003; 1256:547-554.

29. Fariñas W, Paz Z, Orta G. Estudio del factor de disipación dieléctrica como herramienta diagnóstica. Revista Biomédica 2002; 13(4):249-255.

30. Kim B, Isaacson D, Xia H, Kao T-J, Newell JC, Saulnier G. A method for analyzing electrical impedance spectroscopy data from breast cancer patients. Physiological Measurement 2007; 28(7):S237-S246.

31. Jossinet J, Lavandier B. The discrimination of excised cancerous breast tissue samples using impedance spectroscopy. Bioelectrochemistry and bioenergetics 1998; 45(2):161-167.

32. Chauveau N, Hamzaqui L, Rochaix P, Rigaud B, Voigt J, Morucci J. Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Annals of the New York Academy of Sciences 1999; 873:42-50.

33. Da Silva JE, De Sá JP, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy. Medical and Biological Engineering and Computing 2000; 38(1):26-30.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |