DOI: 10.17151/biosa.2016.15.2.2
Cómo citar
Naizaque G., J. R. ., & Torres-Fernández., O. . (2016). La inmunorreactividad a Calbindina en células de purkinje del cerebelo de ratones no es afectada por la infección con virus de la rabia. Biosalud, 15(2), 9–19. https://doi.org/10.17151/biosa.2016.15.2.2

Autores/as

Julián Ricardo Naizaque G.
Instituto Nacional de Salud (INS)
jrnaizaqueg@unal.edu.co
Orlando Torres-Fernández.
Instituto Nacional de Salud (INS)
otorresf@ins.gov.co

Resumen

Introducción: La calbindina (CB) es una proteína reguladora del calcio intracelular y la célula de Purkinje del cerebelo es la neurona con más alta concentración de CB. Se ha demostrado pérdida de inmunorreactividad a CB en diferentes áreas del sistema nervioso en ratones inoculados con virus de la rabia, pero faltaba estudiar este fenómeno en el cerebelo. Objetivo: Determinar el efecto de la inoculación con virus de la rabia sobre la expresión de CB en células de Purkinje del cerebelo de ratones. Metodología: Se inocularon ratones con el virus por vía intramuscular. Se sacrificaron los animales cuando alcanzaron la fase avanzada de la enfermedad y se fijaron mediante perfusión intracardiaca con paraformaldehído al 4%. Se les extrajo el cerebelo y se hicieron cortes sagitales de 50 micrómetros de espesor en un vibrátomo. Estos se procesaron mediante inmunohistoquímica para revelar la presencia de CB o de antígenos del virus de la rabia. El mismo procedimiento se realizó con animales no infectados (controles). Resultados: Las células de Purkinje fueron masivamente infectadas con el virus de la rabia. En las imágenes panorámicas observadas en el microscopio se comprobó que sólo estas células fueron inmunorreactivas a CB. No se hallaron diferencias significativas en la inmunorreactividad a CB, evaluada por densitometría óptica, entre los animales infectados y los controles. Conclusión: La expresión de CB en las células de Purkinje del cerebelo parece no afectarse por la infección con rabia, a diferencia de lo que se ha demostrado en otras áreas del sistema nervioso del ratón.

1. World Health Organization. WHO expert consultation on rabies. En: Technical Report Series No. 982. Geneva: WHO Press 2013; p. 1-139.

2. Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC. Current status of rabies and prospects for elimination. Lancet 2014; 384:1389–99.

3. Vigilato M, Cosivi O, Clavijo A, Silva H. Rabies update for Latin America and the Caribbean. Emerg Infect Dis 2013; 19:678-9.

4. Cediel N, de la Hoz F, Villamil LC, Romero J, Díaz A. Epidemiología de la rabia canina en Colombia. Rev Salud Pública 2010; 12: 368–79.

5. Jackson AC. Rabies. Neurol Clin 2008; 26:717–26.

6. Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: neuropathogenesis, diagnosis, and management. Lancet Neurol 2013; 12:498–513.

7. Iwasaki Y, Tobita M. Pathology. En: Jackson AC, Wunner WH, editores. Rabies. San Diego: Academic Press 2002. p. 283-306.

8. Jackson AC, Randle E, Lawrance G, Rossiter JP. Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 2008; 14:368–75.

9. Suja MS, Mahadevan A, Madhusudana SN, Shankar SK. Role of apoptosis in rabies viral encephalitis: A comparative study in mice, canine, and human brain with a review of literature. Patholog Res Int 2011; 2011:374286. doi: 10.4061/2011/374286.

10. Fu ZF, Jackson AC. Neuronal dysfunction and death in rabies virus infection. J Neurovirol 2005; 11:101–6.

11. Torres-Fernández O, Yepes G, Gómez J, Pimienta H. Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindina y calretinina en la corteza cerebral de ratones. Biomédica 2004; 24:63-78.

12. Andressen C, Blumcke I, Celio M. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res 1993; 271:181-208.

13. Leuba G, Kraftsik R, Saini K. Quantitative distribution of parvalbumin, calretinin, and calbindin D-28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases. Exp Neurol 1998; 152:278–91.

14. Ahmadian SS, Rezvanian A, Peterson M, Weintraub S, Bigio EH, Mesulam MM, Geula C. Loss of calbindin-D28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer’s disease. Neurobiol aging 2015; 36:3163-70.

15. Iacopino AM, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 1990; 87:4078–82.

16. Beasley C, Zhang Z, Patten I, Reynolds G. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium binding proteins. Biol Psychiatry.2002; 52:708- 15.

17. Masliah E, Ge N, Achim CL, Wiley CA. Differential vulnerability of calbindin-immunoreactive neurons in HIV encephalitis. J. Neuropathol Exp Neurol 1995; 54:350-7.

18. Schmidt H. Three functional facets of calbindin D-28k. Front Mol Neurosci 2012; 5:25. doi: 10.3389/fnmol.2012.00025.

19. Schwaller B. The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 2009; 66:275–300.

20. Flace P, Lorusso L, Laiso G, Rizzi A, Cagiano R, Nico B, et al. Calbindin-D28K immunoreactivity in the human cerebellar cortex. Anat Rec 2014; 297:1306–15.

21. Torres-Fernández O, Yepes GE, Gómez JE, Pimienta HJ. Calbindin distribution in cortical and subcortical brain structures of normal and rabies-infected mice. Int J Neurosci 2005;
115:1375–82.

22. Ladogana A, Bouzamondo E, Pocchiari M, Tsiang H. Modification of tritiated γ-amino-n-butyric acid transport in rabies virus-infected primary cortical cultures. J Gen Virol 1994; 75:623–7.

23. Rengifo AC, Torres-Fernández O. Disminución del número de neuronas que expresan GABA en la corteza cerebral de ratones infectados con rabia. Biomédica 2007; 27:548–58.

24. Lamprea N, Torres-Fernández O. Evaluación inmunohistoquímica de la expresión de calbindina en el cerebro de ratones en diferentes tiempos después de la inoculación con el virus de la rabia. Colomb Med 2008; 39 (Supl.3): 7–13.

25. Monroy-Gómez J, Torres-Fernández O. Distribución de calbindina y parvoalbúmina y efecto del virus de la rabia sobre su expresión en la médula espinal de ratones. Biomédica 2013; 33:564–73.

26. Vigot R, Kado RT, Batini C. Increased calbindin-D28K immunoreactivity in rat cerebellar Purkinje cell with excitatory amino acids agonists is not dependent on protein synthesis. Arch Ital Biol 2004; 142:69–75.

27. Koprowski H. The mouse inoculation test. En: Meslin FX, Kaplan MM, Koprowski H, editores. Laboratory Techniques in Rabies. Geneva: World Health Organization, 4th ed; 1996. p. 80–7.

28. Lamprea NP, Ortega LM, Santamaría G, Sarmiento L, Torres-Fernández O. Elaboración y evaluación de un antisuero para la detección inmunohistoquímica del virus de la rabia en tejido cerebral fijado en aldehídos. Biomédica 2010; 30:146-51.

29. Paxinos G, Franklyn, KB. The mouse brain in stereotaxic coordinates. San Diego: Academic Press; 2001.

30. Torres-Fernández O, Santamaría G, Monroy-Gómez J. Dinámica neuroanatómica de infección celular en la ruta de dispersión del virus de la rabia en ratones inoculados por vía intramuscular. Biomédica 2015; 35 (Supl. 3):113-4.

31. Jackson AC, Rossiter JP. Apoptosis plays an important role in experimental rabies virus infection. J Virol 1997; 71:5603-07.

32. Jackson AC, Park H. Apoptotic cell death in experimental rabies in suckling mice. Acta Neuropathol 1998; 95:159-64.

33. Johnson R. Selective vulnerability of neural cells to viral infection. Brain 1980; 103:447-72.

34. Schwaller B, Meyer M, Schiffmann S. ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 2002; 1:241–58

35. Krebs J, Heizmann CW. Calcium-binding proteins and EF-hand principle. En: Krebs J, Michalak M, editores. Calcium: A matter of life or death. Amsterdam: Elsevier B.V.; 2007. p. 51-93.

36. Rengifo AC, Torres-Fernández O. Cambios en los sistemas de neurotransmisión excitador e inhibitorio en el cerebelo de ratones infectados con virus de la rabia. Biomédica 2013; 33 (Supl. 2):80-81.

37. Winsky L, Kuźnicki J. Antibody recognition of calcium-binding proteins depends on their calciumbinding status. J Neurochem 1996; 66:764–71.

38. Verdes JM, de Sant’Ana FJ, Sabalsagaray MJ, Okada K, Calliari A, Moraña JA, de Barros CS. Calbindin D28k distribution in neurons and reactive gliosis in cerebellar cortex of natural rabies virus-infected cattle. J Vet Diagn Invest 2016. May 6. doi: 10.1177/1040638716644485.

39. Hof P, Glezer I, Condé F, Flagg R, Rubin M, Nimchinsky E, Vogt DM. Cellular distribution of the calciumbinding proteins parvalbumin, calbindin and calretinin in the neocortex of ammals: phylogenetic and developmental patterns. J Chem Neuroanat 1999; 16:77-116

40. Rockel A, Hiorns R, Powell T. The basic uniformity in structure of the neocortex. Brain 1980; 103: 221-44.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |