Authors
Abstract
Introduction: One of the research approaches in physiology of body metabolism has been to evaluate the effect of obesity on learning and memory processes. The aim of this work is to describe and analyze the main scientific findings related to the possible effects of obesity on memory and learning in different age groups, based on studies in humans and murine models. Materials and methods: The following databases were used for the electronic literature search: Virtual Health Library, Biological Science Database, Biomed Central, Ebsco, Nature, PubMed, Scielo and Science Direct in the period 2010-2021. Based on the inclusion and exclusion criteria and the evaluation of the title and abstract, the articles to be analyzed for this review were selected. Results: Obesity generates alterations on learning and memory in all age groups, specifically on long-term memory, spatial memory and working memory, as well as on the expression of markers associated with cognitive function, mainly BDNF. This epidemic produces affectations related to working memory, attention and school performance, although these findings were different in each study. Additionally, decreased expression of brain-derived neurotrophic factor (BDNF) has been reported as well as decreased expression of other proteins, particularly in the hippocampus, which are related to cognitive function. Conclusions: Pregestational and gestational obesity negatively impact these processes in the offspring and depending on the age group originate affectations in neuroplasticity and in different components of cognitive function. However, further research is required since some findings are contradictory and there is a lack of information on other related encephalic areas and the reversibility of these effects.
Keywords:
References
2. Cediel-Giraldo G, Castaño-Moreno E, Gaitán-Charry D. Doble carga de malnutrición durante el crecimiento: ¿una realidad latente en Colombia? Rev Salud Pública. 2016; 18(4):656-68. http://dx.doi.org/10.15446/rsap.v18n4.47769
3. Aranceta-Bartrina J. Public health and the prevention of obesity: failure or sucess. Nutr Hosp. 2013; 28(5):128-37. https://doi.org/10.3305/nh.2013.28.sup5.6928
4. Ministerio de Salud y Protección Social. Guía de práctica clínica para la prevención, diagnóstico y tratamiento del sobrepeso y la obesidad en adultos. Guía No. 52. 2016.
5. Organización Panamericana de la Salud. Prevención de la Obesidad.
6. Organización Panamericana de la Salud, Organización Mundial de la Salud. Plan de acción para la prevención de la obesidad en la niñez y en la adolescencia. 2015.
7. Instituto Colombiano de Bienestar Familiar. Ministerio de Salud y Protección Social. Instituto Nacional de Salud. Departamento Administrativo para la Prosperidad Social. Encuesta Nacional de la Situación Nutricional. ENSIN 2015. [Internet]. 2019 [cited 2020 Jan 4]. p. 336.
8. Organización Mundial de la Salud. Estrategia mundial sobre régimen alimentario, actividad física y salud [Internet]. [cited 2020 Jan 4].
9. Hernández-Jiménez S. Fisiopatología de la obesidad. Gac Méd Méx. 2004; 140 (Suplemento No. 2): S-27 S-32.
10. González-Jiménez E. Obesidad: análisis etiopatogénico y fisiopatológico. Endocrinol y Nutr. 2013; 60(1):17-24. 10.1016/j.endonu.2012.03.006.
11. Morgado-Bernal I. Psicobiología del aprendizaje y la memoria. CIC Cuad Inf y Comun [Internet]. 2005; (10):221-33.
12. 1Londoño-Ocampo LP. ¿Es lo mismo el aprendizaje y la memoria? Hacia una amplia conceptualización. Pensando Psicol. 2008; 4(6-7).
13. García-Lázaro HG, Ramirez-Carmona R, Lara-Romero R, Roldan-Valadez E. Neuroanatomy of episodic and semantic memory in humans: A brief review of neuroimaging studies. Neurol India. 2012; 60(6):613-7. 10.4103/0028-3886.105196.
14. De Luca SN, Miller AA, Sominsky L, Spencer SJ. Microglial regulation of satiety and cognition. J Neuroendocr. 2020; 32:e12838. 10.1111/jne.12838.
15. Piñero-Lamas R, Fernández-Britto Rodríguez J, Ferrer-Arrocha M. Factores de riesgo aterosclerótico en el niño y adolescente obeso que pueden causar alteraciones del aprendizaje. Rev Cuba Pediatr. 2010; 82(4):89-97.
16. Casas M, Chatzi L, Carsin A-E, Amiano P, Guxens M, Kogevinas M, et al. Maternal pre-pregnancy overweight and obesity, and child neuropsychological development: two Southern European birth cohort studies. Int J Epidemiol. 2013; 42:506-17. https://doi.org/10.1093/ije/dyt002.
17. Monthé-Drèze C, Rifas-Shiman SL, Gold DR, Oken E, Sen S. Maternal obesity and offspring cognition: the role of inflammation. Pediatr Res. 2019 May; 85(6):799-806. 10.1038/s41390-018-0229-z.
18. Liu X, Li X, Xia B, Jin X, Zou Q, Zeng Z, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab. 2021 May; 33(5):923-938.e6. 10.1016/j.cmet.2021.02.002.
19. Mucellini AB, Laureano DP, Silveira PP, Sanvitto GL. Maternal and post-natal obesity alters longterm memory and hippocampal molecular signaling of male rat. Brain Res. 2019 Apr; 1708:138-45.10.1016/j.brainres.2018.12.021.
20. Wolfrum C, Peleg-Raibstein D. Maternal overnutrition leads to cognitive and neurochemical abnormalities in C57BL/6 mice. Nutr Neurosci. 2019;22(1):688–99. https://doi.org/10.1080/1028415x.2018.1432096.
21. Sarker G, Peleg-Raibstein D. Maternal Overnutrition Induces Long-Term Cognitive Deficits across Several Generations. Nutrients. 2019; 11(7):119. https://doi.org/10.3390/nu11010007.
22. Page KC, Jones KC, Anday EK. Maternal and postweaning high-fat diets disturb hippocampal gene expression, learning, and memory function. Am J Physiol Regul Integr Comp Physiol. 2014; 306:527-37. https://doi.org/10.1152/ajpregu.00319.2013.
23. Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int [Internet]. 2010; 57(3):235-47.
24. Sanguinetti E, Guzzardi MA, Tripodi M, Panetta D, Selma-Royo M, Zega A, et al. Microbiota signatures relating to reduced memory and exploratory behaviour in the offspring of overweight mothers in a murine model. Sci Rep [Internet]. 2019; 9(1):12609. 10.1038/s41598-019-48090-8. Available from: https://doi.org/10.1038/s41598-019-48090-8
25. Martin A, Booth JN, Young D, Revie M, Boyter AC, Johnston B, et al. Associations between Obesity and Cognition in the Pre-School Years. Obesity. 2016; 24(1):207-214. https://doi.org/10.1002/oby.21329.
26. Almusalam S, Asdaq SMB, Almazial N, Alsomali N, Alqahtani N, Mohammed R, et al. Examining the Relationship between Obesity and Memory Function in Female School Children of Riyadh, Saudi Arabia. J King Saud Univ - Sci [Internet]. 2021; 33(8):101663. https://doi.org/10.1016/j.jksus.2021.101663. Available from: https://www.sciencedirect.com/science/article/pii/S1018364721003256
27. Hjorth MF, Sørensen LB, Andersen R, Dyssegaard CB, Ritz C, Tetens I, et al. Normal weight children have higher cognitive performance – Independent of physical activity, sleep, and diet. Physiol Behav. 2016; 165:398–404. https://doi.org/10.1016/j.physbeh.2016.08.021.
28. Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, et al. Early life multiple exposures and child cognitive function: A multi-centric birth cohort study in six European countries. Environ Pollut. 2021 Sep; 284:117404. 10.1016/j.envpol.2021.117404.
29. Shapiro ALB, Wilkening G, Aalborg J, Ringham BM, Glueck DH, Tregellas JR, et al. Childhood Metabolic Biomarkers Are Associated with Performance on Cognitive Tasks in Young Children. J Pediatr. 2019; 211:92-7. https://doi.org/10.1016/j.jpeds.2019.03.043.
30. Zhu Z, Chang S, Cheng Y, Qi Q, Li S, Elhoumed M, et al. Early life cognitive development trajectories and intelligence quotient in middle childhood and early adolescence in rural western China. Sci Rep. 2019; 9:1-9. https://doi.org/10.1038/s41598-019-54755-1.
31. Yau PL, Kang EH, Javier DC, Convit A. Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity. 2014; 22:1865-71. https://doi.org/10.1002/oby.20801.
32. Tee JYH, Gan WY, Tan K-A, Chin YS. Obesity and unhealthy lifestyle associated with poor executive function among Malaysian adolescents. PLoS One. 2018; 13(4):1-17. https://doi.org/10.1371/journal.pone.0195934.
33. Vantieghem S, Bautmans I, De Guchtenaere A, Tanghe A, Provyn S. Improved cognitive functioning in obese adolescents after a 30-week inpatient weight loss program. Pediatr Res. 2018; 84:267-71. https://doi.org/10.1038/s41390-018-0047-3.
34. Pearce AL, Mackey E, Cherry JB c., Olson A, You X, Nadler EP, et al. Altered neural correlates of episodic memory in adolescents with severe obesity. Dev Cogn Neurosci. 2019; 40:1-8. https://doi.org/10.1016/j.dcn.2019.100727.
35. Schwartz DH, Leonard G, Perron M, Richer L, Syme C, Veillette S, et al. Visceral fat is associated with lower executive functioning in adolescents. Int J Obes (Lond). 2013 Oct; 37(10):1336-43. 10.1038/ijo.2013.104.
36. Shields GS, Deer LK, Hastings PD, Hostinar CE. Adiposity, Inflammation, and Working Memory: Evidence for a Vicious Cycle. Brain, Behav Immun - Heal. 2021 May; 13. 10.1016/j.bbih.2021.100202.
37. Del Rio D, Morales L, Ruiz-Gayo M, Del Olmo N. Effect of high-fat diets on mood and learning performance in adolescent mice. Behav Brain Res. 2016; 311:167-72. https://doi.org/10.1016/j.bbr.2016.04.052.
38. Klein C, Jonas W, Iggena D, Empl L, Rivalan M, Wiedmer P, et al. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice. Neurobiol Learn Mem. 2016; 131:26-35. https://doi.org/10.1016/j.nlm.2016.03.002.
39. Valladolid-Acebes I, Fole A, Martín M, Morales L, Cano MV, Ruiz-Gayo M, et al. Spatial memory impairment and changes in hippocampal morphology are triggered by high-fat diets in adolescent mice. Is there a role of leptin? Neurobiol Learn Mem. 2013; 106:18-25. http://dx.doi.org/10.1016/j.nlm.2013.06.012.
40. Khazen T, Hatoum OA, Ferreira G, Maroun M. Acute exposure to a highfat diet in juvenile male rats disrupts hippocampal-dependent memory and plasticity through glucocorticoids. Sci Rep. 2019; 9:1-10. https://doi.org/10.1038/s41598-019-48800-2.
41. Wu H, Liu Q, Kalavagunta PK, Huang Q, Lv W, An X, et al. Normal diet Vs High fat diet - A comparative study: Behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis. 2018; 33:177-90. https://doi.org/10.1007/s11011-017-0140-z.
42. Khade Y, Kumar AVS, Maruthy KN, Sasikala P. Does body mass index influence cognitive functions among young medical students?Clin Epidemiol Glob Heal [Internet]. 2021; 12:100874. https://doi.org/10.1016/j.cegh.2021.100874. Available from: https://www.sciencedirect.com/science/article/pii/S2213398421001822
43. Coppin G, Nolan-Poupart S, Jones-Gotman M, Small DM. Working memory and reward association learning impairments in obesity. Neuropsychologia [Internet]. 2014; 65:146-55.
44. Hartanto A, Yong JC, Toh WX. Bidirectional Associations between Obesity and Cognitive Function in Midlife Adults: A Longitudinal Study. Nutrients. 2019; 11(10):1-13. https://doi.org/10.3390/nu11102343.
45. Narimani, Mohammad. Esmaeilzadeh, Samad. Azevedo LB, Moradi A, Heidari B, Kashfi-Moghadam M. Association between Weight Status and Executive Function in Young Adults. Med. 2019; 55:1-14. https://doi.org/10.3390/medicina55070363.
46. Syan SK, Owens MM, Goodman B, Epstein LH, Meyree D, Sweet LH, et al. Deficits in executive function and suppression of default mode network in obesity. Neuroimage Clin. 2019; 24:1-10. https://doi.org/10.1016/j.nicl.2019.102015.
47. Yang Y, Shields GS, Wu Q, Liu Y, Guo C. Obesity is associated with poor working memory in women, not men: Findings from a nationally representative dataset of U.S. adults. Eat Behav. 2019; 35:1-6. https://doi.org/10.1016/j.eatbeh.2019.101338.
48. De Wit L, Kirton JW, O’Shea DM, Szymkowicz SM, McLaren ME, Dotson VM. Effects of body mass index and education on verbal and nonverbal memory. Aging, Neuropsychol Cogn. 2017; 24(3):256-63. https://doi.org/10.1080/13825585.2016.1194366.
49. Mueller K, Sacher J, Arelin K, Holiga S, Kratzsch J, Villringer A, et al. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiatry. 2012; 2:1-7. https://doi.org/10.1038/tp.2012.121.
50. Karlsson IK, Gatz M, Arpawong TE, Dahl Aslan AK, Reynolds CA. The dynamic association between body mass index and cognition from midlife through late-life, and the effect of sex and genetic influences. Sci Rep. 2021 Mar; 11(1):7206. 10.1038/s41598-021-86667-4.
51. Cherbuin N, Sargent-Cox K, Fraser M, Sachdev P, Anstey KJ. Being overweight is associated with hippocampal atrophy: the PATH Through Life Study. Int J Obes (Lond). 2015 Oct; 39(10):1509-14. 10.1038/ijo.2015.106.
52. McLean FH, Grant C, Morris AC, Horgan GW, Polanski AJ, Allan K, et al. Rapid and reversible impairment of episodic memory by a high-fat diet in mice. Sci Rep. 2018 Aug; 8(1):11976. 10.1038/s41598-018-30265-4.
53. Rendeiro C, Masnik AM, Mun JG, Du K, Clark D, Dilger RN, et al. Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep. 2015 Apr;5:9589. 10.1038/srep09589.
54. Toyama K, Koibuchi N, Hasegawa Y, Uekawa K, Yasuda O, Sueta D, et al. ASK1 is involved in cognitive impairment caused by long-term high-fat diet feeding in mice. Sci Rep [Internet]. 2015; 5(1):10844. 10.1038/srep10844. Available from: https://doi.org/10.1038/srep10844
55. Feijó GDS, de Oliveira S, Thoen R, Schaab EE, de Moura AC, Franco F, et al. Food Selection of Cafeteria Diet Affects Memory Dysfunction Related to Obesity. Neurochem Res [Internet]. 2019; 44(8):1869-77.
56. Fernández-Felipe J, Merino B, Sanz-Martos AB, Plaza A, Contreras A, Naranjo V, et al. Saturated and unsaturated fat diets impair hippocampal glutamatergic transmission in adolescent mice. Psychoneuroendocrinology [Internet]. 2021; 133:105429. https://doi.org/10.1016/j.psyneuen.2021.105429. Available from: https://www.sciencedirect.com/science/article/pii/
S0306453021003036
57. Fernandes-Bondan E, Vieira-Cardoso C, Monteiro-Martins M de F, Otton R. Memory impairments and increased GFAP expression in hippocampal astrocytes following hypercaloric diet in rats. Arq Neuropsiquiatr. 2019; 77(9):601-8. https://doi.org/10.1038/s41598-018-30265-4.
58. Setkowicz Z, Gaździńska A, Osoba JJ, Karwowska1 K, Majka P, Orzeł J, et al. Does Long-Term High Fat Diet Always Lead to Smaller Hippocampi Volumes, Metabolite Concentrations, and Worse Learning and Memory? A Magnetic Resonance and Behavioral Study in Wistar Rats. PLoS One. 2015; 10:1-15. https://doi.org/10.1371/journal.pone.0139987.
59. Holton KF, Hargrave SL, Davidson TL. Differential Effects of Dietary MSG on Hippocampal Dependent Memory Are Mediated by Diet. Front Neurosci. 2019; 13:1-11. https://doi.org/10.3389/fnins.2019.00968.
60. Nuthikattu S, Milenkovic D, Rutledge J, Villablanca A. The Western Diet Regulates Hippocampal Microvascular Gene Expression: An Integrated Genomic Analyses in Female Mice. Sci Rep. 2019; 9:1-19. https://doi.org/10.1038/s41598-019-55533-9.
61. Wang J, Freire D, Knable L, Zhao W, Gong B, Mazzola P, et al. Childhood and Adolescent Obesity and Long-Term Cognitive Consequences During Aging. J Comp Neurol. 2015; 523:757-768. https://doi.org/10.1002/cne.23708.
62. De Luca SN, Ziko I, Sominsky L, Nguyen JCD, Dinan T, Miller AA, et al. Early life overfeeding impairs spatial memory performance by reducing microglial sensitivity to learning. J Neuroinflammation. 2016; 13(112):1-15. https://doi.org/10.1186/s12974-016-0578-7.
63. Valladolid-Acebes I, Stucchi P, Cano V, Fernández-Alfonso MS, Merino B, Gil-Ortega M, et al. High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol Learn Mem. 2011; 95:80-5. https://doi.org/10.1016/j.nlm.2010.11.007.
64. Deshpande NG, Saxena J, Pesaresi TG, Carrell CD, Ashby GB, Liao M-K, et al. High fat diet alters gut microbiota but not spatial working memory in early middle-aged Sprague Dawley rats. PLoS One. 2019; 14(5):1-14. https://doi.org/10.1371/journal.pone.0217553.
65. Woo J, Shin KO, Park SY, Kang KS, Jang S. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats. Lipids Heal Dis. 2013; 12:1-10. https://doi.org/10.1186/1476-511x-12-144.
66. Park H-S, Park S-S, Kim C-J, Shin M-S, Kim T-W. Exercise Alleviates Cognitive Functions by Enhancing Hippocampal Insulin Signaling and Neuroplasticity in High-Fat Diet-Induced Obesity. Nutrients. 2019; 11:1-13. https://doi.org/10.3390/nu11071603.
67. Arcego DM, Krolow R, Lampert C, Toniazzo AP, Berlitz C, Lazzaretti C, et al. Early life adversities or high fat diet intake reduce cognitive function and alter BDNF signaling in adult rats: Interplay of these factors changes these effects. Int J Dev Neurosci. 2016; 50:16-25. https://doi.org/10.1016/j.ijdevneu.2016.03.001.
68. Davis JA, Paul JR, Yates SD, Cutts EJ, McMahon LL, Pollock JS, et al. Time-restricted feeding rescues high-fat-diet-induced hippocampal impairment. iScience. 2021 Jun; 24(6):102532. 10.1016/j.isci.2021.102532.
69. Wahid RM, Samy W, El-sayed SF. Cognitive impairment in obese rat model: role of glial cells. Int J Obes [Internet]. 2021; 45(10):2191-6. 10.1038/s41366-021-00880-9. Available from: https://doi.org/10.1038/s41366-021-00880-9
70. Leyh J, Winter K, Reinicke M, Ceglarek U, Bechmann I, Landmann J. Long-term diet-induced obesity does not lead to learning and memory impairment in adult mice. PLoS One. 2021; 16(9):e0257921.10.1371/journal.pone.0257921.
71. McFadden T, Musaus M, Nelsen JL, Martin K, Jones N, Smith P, et al. Dysregulation of protein degradation in the hippocampus is associated with impaired spatial memory during the development of obesity. Behav Brain Res. 2020 Sep; 393:112787.10.1016/j.bbr.2020.112787.
72. Zanini P, Arbo BD, Niches G, Czarnabay D, Benetti F, Ribeiro MF, et al. Diet-induced obesity alters memory consolidation in female rats. Physiol Behav. 2107; 180:91-7. https://doi.org/10.1016/j.physbeh.2017.08.011.
73. Heyward FD, Gilliam D, Coleman MA, Gavin CF, Wang J, Kaas G, et al. Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1. J Neurosci [Internet]. 2016; 36(4):1324-35.
74. Boitard C, Maroun M, Tantot F, Cavaroc A, Sauvant J, Marchand A, et al. Juvenile obesity enhances emotional memory and amygdala plasticity through glucocorticoids. J Neurosci [Internet]. 2015; 35(9):4092-103.
75. McLean FH, Campbell FM, Sergi D, Grant C, Morris AC, Hay EA, et al. Early and reversible changes to the hippocampal proteome in mice on a high-fat diet. Nutr Metab. 2019; 16(57):1-12. https://doi.org/10.1186/s12986-019-0387-y.
76. Pakiet A, Jakubiak A, Czumaj A, Sledzinski T, Mika A. The effect of western diet on mice brain lipid composition. Nutr Metab. 2019; 16(81):1-10. https://doi.org/10.1186/s12986-019-0401-4.
77. Hao S, Dey A, Yu X, Stranahan AM. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun. 2016;51:230–9. https://doi.org/10.1016/j.bbi.2015.08.023.
78. Kesby JP, Kim JJ, Scadeng M, Woods G, Kado DM, Olefsky JM, et al. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet. PLoS One. 2015; 10(10):1-15. https://doi.org/10.1371/journal.pone.0140034.
79. Meguro S, Hosoi S, Hasumura T. High-fat diet impairs cognitive function of zebrafish. Sci Rep. 2019; 9:1-9. https://doi.org/10.1038/s41598-019-53634-z.
80. Picolo VL, Quadros VA, Canzian J, Grisolia CK, Goulart JT, Pantoja C, et al. Short-term high-fat diet induces cognitive decline, aggression, and anxiety-like behavior in adult zebrafish. Prog NeuroPsychopharmacology Biol Psychiatry [Internet]. 2021;110:110288. https://doi.org/10.1016/j.pnpbp.2021.110288. Available from: https://www.sciencedirect.com/science/article/pii/
S0278584621000476
81. Davidson T, Hargrave S, Swithers S, Sample C, Fu X, Kinzig K, et al. Interrelationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience. 2013; 253:110-22. http://doi.org/10.1016/j.neuroscience.2013.08.044.
82. Miller A, Spencer S. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav Immun. 2014; 42:10-21. https://doi.org/10.1016/j.bbi.2014.04.001.
83. Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. 2019; 13:363. 10.3389/fncel.2019.00363.
84. Ortega Loubon C, Franco JC. Neurofisiología del aprendizaje y la memoria. Plasticidad Neuronal. Arch Med [Internet]. 2010; 6(1:2). 10.3823/048. Available from: https://www.archivosdemedicina.com/medicina-de-familia/neurofisiologa-del-aprendizaje-y-la-memoria-plasticidad-neuronal.pdf
85. Pérez-García G, Liy-Salmerón G, Meneses A. Receptores serotonérgicos y memoria. Rev Mex Análisis la Conduct [Internet]. 2006; 32(2):241-69.
86. Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. Obesity and Metabolic Syndrome and Functional and Structural Brain Impairments in Adolescence. Pediatrics. 2012; 130(4):856-64. https://doi.org/10.1542/peds.2012-0324.
87. McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem. 2010; 93:546-53. https://doi.org/10.1016/j.nlm.2010.02.002.