Authors
Abstract
The development of nicotine dependence is determined not only by social factors but also by individual psychological and biological factors. Human cytochrome P450 2A6 (CYP2A6), the enzyme that catalyses the metabolism of nicotine, has been shown to have large interindividual and interethnic variability in expression and activity levels. The interindividual variation in metabolic activity may affect the metabolism of CYP2A6 substrates including nicotine, cotinine (the major metabolite of nicotine), several tobaccospecific procarcinogens, coumarin and many toxins. The present review analyses the scientific literature related to variations in CYP2A6 and tobacco consumption.
Keywords:
References
Mills EJ, Wu P, Spurden D, Ebbert J, Wilson K. Efficacy of pharmacotherapies for short-term smoking abstinence: A systematic review and meta-analysis. Harm Reduct J 2009;6(25): 1-16.
Dome P, Lazary J, Kalapos MP, Rihmer Z. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev 2009. 34(3):295-342.
Williams JM, Gandhi KK. Use of caffeine and nicotine in people with schizophrenia. Curr Drug Abuse Rev 2008 Jun;1(2):155-161.
Thunnissen FB. Acetylcholine receptor pathway and lung cancer. J Thorac Oncol 2009 Aug;4(8):943-946.
Zhang W, Kilicarslan T, Tyndale RF, Sellers EM. Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Dispos 2001;29:897-902.
Sellers EM, Kaplan HL, Tyndale RF. Inhibition of cytochrome P450 2A6 increases nicotine’s oral bioavaiability and decreases smoking. Clin Pharmacol Ther 2000;6835-6843.
Kharasch ED, Hankins DC, Taraday JK. Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity. Drug Metab Dispos 2000;28:28-33.
Armitage AK, Turner DM. Absorption of nicotine in cigarette and cigar smoke through the oral mucosa. Nature 1970;27:1231-1232.
Gupta SK, Benowitz NL, Jacob P 3rd, Rolf CN, Gorsline J. Bioavailability and absorption kinetics of nicotine following application of a transdermal system. Br J Clin Pharmacol 1993;36(3):221-227.
Benowitz NL, Jacob P 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 1994;56(5):483-493.
Benowitz NL, Kuyt F, Jacob P 3rd, Jones RT, Osman AL. Cotinine disposition and effects. Clin Pharmacol Ther 1983;34(5):604-611.
Hatsukami DK, Grillo M, Pentel PR, Oncken C, Bliss R. Safety of cotinine in humans: physiologic, subjective, and cognitive effects. Pharmacol Biochem Behav 1997;57(4):643-650.
Robinson DE, Balter NJ, Schwartz SL. A physiologically based pharmacokinetic model for nicotine and cotinine in man. J Pharmacokinet Biopharm 1992;20(6):591-609.
Nakajima M, Kuroiwa Y, Yokoi T. Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab Rev 2002;34(4):865-877.
Rush R, Kuryatov A, Nelson ME, Lindstrom J. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine. Mol Pharmacol 2002;61(6):1416-1422.
Singer J, Janz T. Apnea and seizures caused by nicotine ingestion. Pediatr Emerg Care 1990;6(2):135-137.
Arcury TA, Quandt SA, Simmons S. Farmer health beliefs about an occupational illness that affects farmworkers: the case of green tobacco sickness. J Agric Saf Health 2003;9(1):33-45.
McKennis JH, Turnbull LB, Bowmann ER. (3-Pyridyl)- methylamino butyric acid as a urinary metabolite of nicotine. J Am Chem Soc 1957;79:6342-6343.
Hucker HB, Gilette JR, Brodie BB. Enzymatic pathway for the formation of cotinine, a major metabolite of nicotine in rabbit liver. J Pharmacol Exp Ther 1960;129:94-100.
Murphy, PJ. Enzymatic oxidation of nicotine to nicotine iminium ion. J Biol Chem 1973; 248: 2796–2800.
McKennis H, Bowman ER, Turnbull LB. The isolation and the structure of a ketoamide arising from the metabolism of nicotine. J Am Chem Soc 1960;82:3974-3976.
McKennis H, Bowman, ER, Turnbull LB. Mammalian degredation of nicotine to 3-pyridyl acetic acid and other compounds. Proc Soc Exp Biol Med 1961;107:145-148.
McKennis H, Schwartz, SL, Bowman, ER. Alternate routes in the metabolic degredation of the pyyrolidine ring of nicotine. J Biol Chem 1964;239:3990-3996.
Bowman ER, McKennis H. Studies on the metabolism of cotinine in the human. J Pharmacol Exp Ther 1962;135: 306-311.
Hansson EH, Hoffmann PC, Schmiterlow CG. Metabolism of nicotine in mouse tissue slices. Acta Physiol Scand 1964;61:380-392.
Stalhandsko T. The metabolism of nicotine and cotinine by a mouse liver preparation. Acta Physiol Scand 1970;78:236-248.
Papdopulos NM. Nicotine-1-oxide. Arch Biochem Biophys 1964;106:182-185.
Nakajima M, Iwata K, Yoshida T, Yamamoto T, Kuroiwa Y. Diastereospecific kinetics of nicotine N0-oxidation in rat liver microsomes. Xenobiotica1998;28(2):127-135.
Gorrod JW, Schepers G, Jacob P. Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Amsterdam. p. 45-67.
McKennis H, Turnbull LB, Brownmann EB. Nmethylation of nicotine and cotinine in vivo. J Biol Chem 1963;238:719-723.
Cundy KC, Godin KS, Crooks PA. Evidence of stereospecifity in the in vivo methylation of nicotine in the guinea pig. Drug Metab Dispos 1984;12:755-759.
Crooks PA, Godin CS. N-methylation of nicotine enantiomers by human liver cytosol. J Pharm Pharmacol 1988;40:153-154.
Tsai MC, Gorrod JW. Evidence for the biosynthesis of A glucuronide conjugate of (S)-(2)-nicotine, but not (S)-(2)- cotinine or (þ/2)-trans-30-hydroxycotinine by marmoset hepatic microsomes. Drug Metabol Drug Interact 1999;15(4):223-237.
Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y. Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab Dispos 1996;24(11):1212-1217.
Benowitz NL, Jacob P. Effects of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism. Clin Pharmacol Ther 2000;67(6):653-659.
Perlman HH, Dannenberg AM, Bokolof N. The excretion of nicotine in breast milk and urine from cigarette smoking its effect on location and the nursling. J Am Med Assoc 1942;120:1003-1009.
Turner DM. The metabolism of nicotine in the cat. Biochem J 1969;115:889-896.
Seaton MJ, Kyerematen GA, Vesell ES. Rates of excretion of cotinine, nicotine glucuronide, and 3-hydroxycotinine glucuronide in rat bile. Drug Metab Dispos 1993;21(5):927-932.
Dawson EB, Evans DR, Harris WA, McGanity WJ. The effect of ascorbic acid supplementation on the nicotine metabolism of smokers. Prev Med 1999;6(Pt 1):451-454.
Luck W., Nau H. 1985. Nicotine and cotinine concentrations in serum and urine of infants exposed via passive smoking or milk from smoking mothers. J Pediatr 1999;107(5):816-820.
Benowitz NL, Jacob P. Nicotine renal excretion rate influences nicotine intake during cigarette smoking. J Pharmacol Exp Ther 1985;234(1):153-155.
Becket AH, Rowland M, Triggs EJ. Significance of smoking in investigation of urinary excretion rates of amines in man. Nature1965;207:200-201.
Nelson DR. Cytochrome P450. Homepage; 2002. http://drnelson.utmem.edu/CytochromeP450.html
Yamano S, Tatsuno J, González F. The CYP2A3 gene product catalyses coumarin 7-hydroxylation in human liver microsomes, Biochemistry 1990;29: 1322-1329.
Miles J, McLaren A, Forrester M, Glancey M, Lang M, Wolf C. Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity. Biochem J 1990;267:365-371.
Ingelman-Sundberg M. Pharmacogenetics: an opportunitybioavailfor a safer and more efficient pharmacotherapy, J Intern Med 2001;250:186-200.
Raunio H, Syngelma T, Pasanen M, Juvonen R, Honkakoski P, Kairaluoma MA, Sotaniemi E, Lang MA, Pelkonen O. Immunochemical and catalytical studies on hepatic coumarin 7-hydroxylase in man, rat, and mouse. Biochem Pharmacol 1988;37:3889-3895.
Li Y, Li NY, Sellers EM. Comparison of CYP2A6 catalytic activity on coumarin 7-hydroxylation in human and monkey liver microsomes. Eur J Drug Metab Pharmacokinet 1997;22:295-304.
Yamano S, Tatsuno J, González F. The CYP2A3 gene product catalyses coumarin 7-hydroxylation in human liver microsomes, Biochemistry 1990;29:1322-1329.
Hoffman SM, Fernández P, Salguero FJ, González, HW Mohrenweiser. Organization and evolution of the cyto-chrome P450 CYP2A-2B-2F subfamily gene cluster on human chromosome 19. J Mol Evol 1995;41:894-900.
Sadeque AJ, Fisher MB, Korzekwa K, González FJ, Rettie AE. Human CYP2C9 and CYP2A6 mediate forma tion of the hepatotoxin 4-ene-valproic acid. J Pharmacol Exp Ther 1997;283:698-703.
Zaccaro C, De Matteis F, Pahler F, Dekant W. Neoantigen formation and clastogenic action of HCFC-123 and perch-loroethylene in human MCL-5 cells. Toxicol Lett 2001;124:129-138.
Benowitz NL, Pérez Stable EJ, Herrera B, Jacob P 3rd. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J Natl Cancer Inst 2002;94:108-115.
Benowitz NL, Jacob P 3rd. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 1994;56:483-493.
Messina ES, Tyndale RF, Sellers EM. A major role for CYP2A6 in nicotine C-oxidation by human liver micro somes. J Pharmacol Exp Ther 1997;282:1608-1614.
Benowitz NL, Pérez Stable EJ, Fong I, Modin G. Nicotine and cotinine. J Pharmacol Exp Ther 1999;291:1196-1203.
Pérez Stable EJ, Herrera B, Jacob P, Benowitz NL. Nicotine metabolism and intake in black and white smokers. J Am Med Assoc 1998;280:152-156.
WHO. Guidelines for Controlling and Monitoring the Tobacco Epidemic. Geneva: WHO; 1998.
True WR, Heath AC, Scherrer JF, Waterman B, Goldberg J, Lin N, Eisen SA, Lyons MJ, Tsuang MT. Genetic and environmental contributions to smoking. Addiction 1997;92:1277-1287.
Madden PA, Heath AC, Pedersen NL, Kaprio J, Koskenvuo MJ, Martin NG. The genetics of smoking per-sistence in men and women: a multicultural study. Behav Genet 1999;29:423-431.
Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther 1985;234:1-12.
McMurrow MJ, Fox RM. Nicotine’s role in smoking: an analysis of nicotine regulation. Psychol Bull 1983;93:302-327.
Tyndale RF, Sellers EM. Genetic variation in CYP2A6- medicated nicotine metabolism alters smoking behavior. Ther Drug Monit 2002;24:163-171.
Rao Y, Hoffmann E, Zia M, Bodin L, Zeman M, Sellers M, Tyndale RF. Duplications and defects in the CYP2A6 gene: identification, genotyping, and in vivo effects on smoking. Mol Pharmacol 2000;58:747-755.
Gu DF, Hinks LJ, Morton NE, Day INM. The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann Hum Genet 2000;64:383-390.
Hara H, Nakanishi Y, Izumi M. Epidemiology of lung cancer in Japan. Nippon Rinsho 2000;58:1005-1011.
Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999;91:1194-1210.
Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. Human cytochrome P450 CYP2A13: predominant expres- Toxsion in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnit-rosamino)-1-(3-pyridyl)-1-butanone. Cancer Res 2000;60:5074-5079.
Patten CJ, Smith TJ, Tynes R, Friesen M, Lee J, Yang CS, Murphy SE. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N’-nitrosonornicotine a-hydroxylation in human liver microsomes. Carcinogenesis1997;18:1623-1628.
Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 2000;32:395-411.
Giovino GA, Shelton DM, Schooley MW. Trends in cigarette smoking cessation in the United States. Tobacco Control 1993;2(suppl):3-16.
Sellers EM, Kaplan HL, Tyndale RF. Inhibition of cytochrome P450 2A6 increases nicotine’s oral bioavailability and decreases smoking. Clin Pharmacol Ther 2000;68:35-43.