DOI: 10.17151/biosa.2018.17.2.5
How to Cite
Rueda O. , A. del P. ., & Enríquez S. , L. F. . (2018). A review of basic neuroimaging techniques in diagnosis of neurodegenerative diseases. Biosalud, 17(2), 59–90. https://doi.org/10.17151/biosa.2018.17.2.5

Authors

Andrea del Pilar Rueda O.

Doctora en Ingeniería de Sistemas y Computación. Profesora Asistente Departamento de Ingeniería de Sistemas. Pontificia Universidad Javeriana Bogotá, Colombia. 

Pontificia Universidad Javeriana
rueda-andrea@javeriana.edu.co
https://orcid.org/0000-0002-9245-7328
Luis Fernando Enríquez S.

Bioingeniero. Estudiante Maestría en Bioingeniería. Pontificia Universidad Javeriana, Bogotá, Colombia.

Pontificia Universidad Javeriana
lfernando.enriquez@javeriana.edu.co
https://orcid.org/0000-0001-7885-7897

Abstract

Currently, neurodegenerative disorders represent a serious public health problem, with an increasing prevalence worldwide. Even though there has been an attempt to harmonize the diagnostic criteria for these disorders, there are still obstacles that hinder their correct differentiation, leading to subsequent errors in therapeutic stages. This review aims to demonstrate the potential of three neuroimaging techniques (positron emission tomography, diffusion-weighted magnetic resonance, and structural magnetic resonance) in the identification of discriminating biomarkers that support the diagnostic process in three of the most common neurodegenerative disorders (Alzheimer’s disease, Mild Cognitive Impairment, frontotemporal dementia). A review was done via an electronic literature search. The use of ScienceDirect, PubMed, SciELO, and IEEE databases to find information on representative structural and functional findings, as well as the diagnostic power of these techniques, is highlighted. As the studies confirm, neuroimages show their potential to establish patterns in the differentiation of neurodegenerative disorders. The structural magnetic resonance remains as a central tool in the identification of cortical and subcortical atrophy patterns. On the other hand, advances in positron emission tomography have enabled not only antemortem diagnosis but also early preclinical identification. Likewise, the recent approach of diffusion magnetic resonance allows to characterizing the microstructural integrity of the cerebral white matter and its relationship with cognitive deterioration in the context of the neurodegenerative disorder. By integrating information from different domains, the clinically accepted tools are supported, guaranteeing better diagnostic accuracy and the prediction of the onset of the disorder. The results show that through multimodal approaches, multicenter collaborations, harmonization of methodologies and acquisition parameters it is possible to include these tools in the clinical repertoire for the identification of these disorders.

1. American Psychiatric Association, editor. Diagnostic and statistical manual of mental disorders: DSMIV; includes ICD-9-CM codes effective 1. Oct. 96. 4. ed., 7. print. Washington, DC; 1998. 886 p.

2. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005Y2010. J Neuropathol Exp Neurol. 2012; 71(4):8.

3. Tartaglia MC, Zhang Y, Racine C, Laluz V, Neuhaus J, Chao L, et al. Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol. junio de 2012; 259(6):1071-80.

4. Hampstead BM, Brown GS. Using Neuroimaging to Inform Clinical Practice for the Diagnosis and Treatment of Mild Cognitive Impairment. Clin Geriatr Med. 1 de noviembre de 2013; 29(4):829-45.

5. Jack CR, Barnes J, Bernstein MA, Borowski BJ, Brewer J, Clegg S, et al. Magnetic resonance imaging in Alzheimer’s Disease Neuroimaging Initiative 2. Alzheimers Dement. 1 de julio de 2015; 11(7):740-56.

6. Mishra S, Gordon BA, Su Y, Christensen J, Friedrichsen K, Jackson K, et al. AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure. NeuroImage. 1 de noviembre de 2017; 161:171-8.

7. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. agosto de 2007; 6(8):734-46.

8. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild Cognitive Impairment: Ten Years Later. Arch Neurol. 1 de diciembre de 2009; 66(12):1447-55.

9. Mahoney CJ, Ridgway GR, Malone IB, Downey LE, Beck J, Kinnunen KM, et al. Profiles of white matter tract pathology in frontotemporal dementia. Hum Brain Mapp. 1 de agosto de 2014; 35(8):4163-79.

10. Santillo AF, Mårtensson J, Lindberg O, Nilsson M, Manzouri A, Waldö ML, et al. Diffusion Tensor Tractography versus Volumetric Imaging in the Diagnosis of Behavioral Variant Frontotemporal Dementia. PLOS ONE. 18 de julio de 2013; 8(7):e66932.

11. Borroni B, Brambati SM, Agosti C, Gipponi S, Bellelli G, Gasparotti R, et al. Evidence of White Matter Changes on Diffusion Tensor Imaging in Frontotemporal Dementia. Arch Neurol. 1 de febrero de 2007; 64(2):246.

12. Daianu M, Mendez MF, Baboyan VG, Jin Y, Melrose RJ, Jimenez EE, et al. An advanced white matter tract analysis in frontotemporal dementia and early-onset Alzheimer’s disease. Brain Imaging Behav. 1 de diciembre de 2016; 10(4):1038-53.

13. Braskie MN, Thompson PM. A Focus on Structural Brain Imaging in the Alzheimer’s Disease Neuroimaging Initiative. Biol Psychiatry. 1 de abril de 2014; 75(7):527-33.

14. Rohrer JD. Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta BBA - Mol Basis Dis. 1 de marzo de 2012; 1822(3):325-32.

15. Xia C, Dickerson BC. Multimodal PET Imaging of Amyloid and Tau Pathology in Alzheimer Disease and Non–Alzheimer Disease Dementias. PET Clin. 1 de julio de 2017; 12(3):351-9.

16. Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R, et al. 11 C-PIB-PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Dementia and Cognitive Improvement Group, editor. Cochrane Database Syst Rev [Internet]. 23 de julio de 2014 [citado 9 de agosto de 2018]; Disponible en: http://doi.wiley.com/10.1002/14651858.CD010386.pub2

17. Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev. 1 de septiembre de 2016; 30:73-84.

18. Le Bihan D, Johansen-Berg H. Diffusion MRI at 25: Exploring brain tissue structure and function. NeuroImage. junio de 2012; 61(2):324-41.

19. Nir TM, Villalon-Reina JE, Prasad G, Jahanshad N, Joshi SH, Toga AW, et al. Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer’s disease. Neurobiol Aging. 1 de enero de 2015; 36:S132-40.

20. Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 1 de mayo de 2011; 10(5):424-35.

21. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B - Klunk - 2004 - Annals of
Neurology - Wiley Online Library [Internet]. [citado 10 de agosto de 2018]. Disponible en: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.20009

22. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement. agosto de 2015;11(8):964-74.

23. Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, et al. Use of Florbetapir-PET for Imaging β-Amyloid Pathology. JAMA. 19 de enero de 2011; 305(3):275-83.

24. Forsberg A, Almkvist O, Engler H, Wall A, Nordberg BL and A. High PIB Retention in Alzheimers
Disease is an Early Event with Complex Relationship with CSF Biomarkers and Functional Parameters [Internet]. Current Alzheimer Research. 2010 [citado 10 de agosto de 2018]. Disponible en: http://www.eurekaselect.com/85618/article

25. Villemagne VL, Okamura N. Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr Opin Neurobiol. febrero de 2016; 36:43-51.

26. Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: Results from ADNI. NeuroImage. 15 de febrero de 2009; 44(4):1415-22.

27. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med. 11 de mayo de 2016; 8(338):338ra66- 338ra66.

28. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 1 de enero de 2016; 79(1):110-9.

29. Kang JM, Lee S-Y, Seo S, Jeong HJ, Woo S-H, Lee H, et al. Tau positron emission tomography using [18F]THK5351 and cerebral glucose hypometabolism in Alzheimer’s disease. Neurobiol Aging. 1 de noviembre de 2017; 59:210-9.

30. Gray KR, Wolz R, Heckemann RA, Aljabar P, Hammers A, Rueckert D. Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage. 1 de marzo de 2012; 60(1):221-9.

31. Vanhoutte M, Semah F, Rollin Sillaire A, Jaillard A, Petyt G, Kuchcinski G, et al. 18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer’s disease. Neurobiol Aging. 1 de noviembre de 2017; 59:184-96.

32. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter Standardized 18F-FDG PET Diagnosis of Mild Cognitive Impairment, Alzheimer’s Disease, and Other Dementias. J Nucl Med Off Publ Soc Nucl Med. marzo de 2008; 49(3):390-8.

33. Goveas J, O’Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, et al. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging. 1 de septiembre de 2015; 33(7):853-76.

34. Acosta-Cabronero J, Alley S, Williams GB, Pengas G, Nestor PJ. Diffusion Tensor Metrics as Biomarkers in Alzheimer’s Disease. PLOS ONE. 7 de noviembre de 2012; 7(11):e49072.

35. Agosta F, Pievani M, Sala S, Geroldi C, Galluzzi S, Frisoni GB, et al. White Matter Damage in Alzheimer Disease and Its Relationship to Gray Matter Atrophy. Radiology. 1 de marzo de 2011; 258(3):853-63.

36. Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ. Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain. 1 de febrero de 2010; 133(2):529-39.

37. Douaud G, Jbabdi S, Behrens TEJ, Menke RA, Gass A, Monsch AU, et al. DTI measures in crossingfibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. NeuroImage. 1 de abril de 2011; 55(3):880-90.

38. Mayo CD, Mazerolle EL, Ritchie L, Fisk JD, Gawryluk JR. Longitudinal changes in microstructural white matter metrics in Alzheimer’s disease. NeuroImage Clin. 1 de enero de 2017; 13:330-8.

39. Tondelli M, Wilcock GK, Nichelli P, De Jager CA, Jenkinson M, Zamboni G. Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiol Aging. 1 de abril de 2012; 33(4):825.e25-825.e36.

40. Boutet C, Chupin M, Lehéricy S, Marrakchi-Kacem L, Epelbaum S, Poupon C, et al. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: A feasibility study. NeuroImage Clin. 1 de enero de 2014; 5:341-8.

41. Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus. 1 de noviembre de 2009; 19(11):1055-64.

42. Barnes J, Bartlett JW, van de Pol LA, Loy CT, Scahill RI, Frost C, et al. A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol Aging. Noviembre de 2009; 30(11):1711-23.

43. den Heijer T, van der Lijn F, Koudstaal PJ, Hofman A, van der Lugt A, Krestin GP, et al. A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain. 1 de abril de 2010; 133(4):1163-72.

44. Sarazin M, Chauviré V, Gerardin E, Colliot O, Kinkingnéhun S, Souza D, et al. The Amnestic Syndrome of Hippocampal type in Alzheimer’s Disease: An MRI Study. J Alzheimers Dis. 1 de enero de 2010; 22(1):285-94.

45. Li X, Jiao J, Shimizu S, Jibiki I, Watanabe K, Kubota T. Correlations between atrophy of the entorhinal cortex and cognitive function in patients with Alzheimer’s disease and mild cognitive impairment. Psychiatry Clin Neurosci. 1 de diciembre de 2012; 66(7):587-93.

46. Velayudhan L, Proitsi P, Westman E, Muehlboeck J-S, Mecocci P, Vellas B, et al. Entorhinal Cortex Thickness Predicts Cognitive Decline in Alzheimer’s Disease. J Alzheimers Dis. 1 de enero de 2013; 33(3):755-66.

47. Caminiti SP, Ballarini T, Sala A, Cerami C, Presotto L, Santangelo R, et al. FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. NeuroImage Clin. 2018; 18:167-77.

48. Yuan Y, Gu Z-X, Wei W-S. Fluorodeoxyglucose–Positron-Emission Tomography, Single-Photon Emission Tomography, and Structural MR Imaging for Prediction of Rapid Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment: A Meta-Analysis. Am J Neuroradiol. 1 de febrero de 2009; 30(2):404-10.

49. Cerami C, Della Rosa PA, Magnani G, Santangelo R, Marcone A, Cappa SF, et al. Brain metabolic maps in Mild Cognitive Impairment predict heterogeneity of progression to dementia. NeuroImage Clin. 1 de enero de 2015; 7:187-94.

50. Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Comparing predictors of conversion and decline in mild cognitive impairment(Podcast)(e–Pub ahead of print). Neurology. 20 de julio de 2010; 75(3):230-8.

51. Insel PS, Hansson O, Mackin RS, Weiner M, Mattsson N. Amyloid pathology in the progression to mild cognitive impairment. Neurobiol Aging. 1 de abril de 2018; 64:76-84.

52. Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, Solé-Padullés C, et al. Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging. 1 de enero de 2012; 33(1):61-74.

53. Wang Y, West JD, Flashman LA, Wishart HA, Santulli RB, Rabin LA, et al. Selective changes in white matter integrity in MCI and older adults with cognitive complaints. Biochim Biophys Acta BBA - Mol Basis Dis. 1 de marzo de 2012; 1822(3):423-30.

54. Shim G, Choi K-Y, Kim D, Suh S, Lee S, Jeong H-G, et al. Predicting neurocognitive function with hippocampal volumes and DTI metrics in patients with Alzheimer’s dementia and mild cognitive impairment. Brain Behav. 1 de septiembre de 2017; 7(9):n/a-n/a.

55. Gyebnár G, Szabó Á, Sirály E, Fodor Z, Sákovics A, Salacz P, et al. What can DTI tell about early cognitive impairment? – Differentiation between MCI subtypes and healthy controls by diffusion tensor imaging. Psychiatry Res Neuroimaging. 28 de febrero de 2018; 272:46-57.

56. Liu Y, Paajanen T, Zhang Y, Westman E, Wahlund L-O, Simmons A, et al. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol Aging. 1 de agosto de 2010; 31(8):1375-85.

57. Nesteruk M, Nesteruk T, Styczyńska M, Barczak A, Mandecka M, Walecki J, et al. Predicting the conversion of mild cognitive impairment to Alzheimer’s disease based on the volumetric measurements of the selected brain structures in magnetic resonance imaging. Neurol Neurochir Pol. 1 de noviembre de 2015; 49(6):349-53.

58. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991; 82(4):239-59.

59. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 1 de octubre de 2007; 130(10):2616-35.

60. Tosun D, Schuff N, Rabinovici GD, Ayakta N, Miller BL, Jagust W, et al. Diagnostic utility of ASL-MRI and FDG-PET in the behavioral variant of FTD and AD. Ann Clin Transl Neurol. 30 de agosto de 2016; 3(10):740-51.

61. Schroeter ML, Raczka K, Neumann J, Yves von Cramon D. Towards a nosology for frontotemporal lobar degenerations—A meta-analysis involving 267 subjects. NeuroImage. Julio de 2007; 36(3):497-510.

62. Kipps CM, Hodges JR, Fryer TD, Nestor PJ. Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain. 1 de septiembre de 2009; 132(9):2566-78.

63. Dukart J, Mueller K, Horstmann A, Barthel H, Möller HE, Villringer A, et al. Combined Evaluation of FDG-PET and MRI Improves Detection and Differentiation of Dementia. PLoS ONE [Internet]. 23 de marzo de 2011 [citado 12 de agosto de 2018]; 6(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063183/

64. Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 6 de diciembre de 2011; 77(23):2034-42.

65. Steketee RME, Meijboom R, de Groot M, Bron EE, Niessen WJ, van der Lugt A, et al. Concurrent white and gray matter degeneration of disease-specific networks in early-stage Alzheimer’s disease and behavioral variant frontotemporal dementia. Neurobiol Aging. 1 de julio de 2016; 43:119-28.

66. Knopman DS, Jack CR, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, et al. Brain and ventricular volumetric changes in frontotemporal lobar degeneration over 1 year. Neurology. 26 de mayo de 2009; 72(21):1843-9.

67. 67. Du A-T, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain. 1 de abril de 2007; 130(4):1159-66.

68. Vemuri P, Simon G, Kantarci K, Whitwell JL, Senjem ML, Przybelski SA, et al. Antemortem differential diagnosis of dementia pathology using structural MRI: Differential-STAND. NeuroImage. 15 de marzo de 2011; 55(2):522-31.

69. Meyer S, Mueller K, Stuke K, Bisenius S, Diehl-Schmid J, Jessen F, et al. Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data. NeuroImage Clin. 1 de enero de 2017; 14:656-62.

70. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience. 2013 May; 14(5):365–76.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |