DOI: 10.17151/biosa.2020.19.2.1
How to Cite
Rojas Rodríguez, A. E., Cárdenas Parra, L. Y., Zapata Serna, Y., & Pérez Cárdenas, J. E. (2025). Virulence factors of Candida spp and molecular mechanisms of resistance to azoles expressed by Candida tropicalis. Biosalud, 19(2), 7–25. https://doi.org/10.17151/biosa.2020.19.2.1

Authors

Ana Elisa Rojas Rodríguez
Universidad Católica de Manizales
arojas@ucm.edu.co
https://orcid.org/0000-0002-8421-633X
Perfil Google Scholar
Leidy Yurany Cárdenas Parra
Universidad de Caldas
leidy.cardenas@ucaldas.edu.co
https://orcid.org/0000-0001-7505-8539
Perfil Google Scholar
Yuliana Zapata Serna
Universidad Católica de Manizales
yzapata@ucm.edu.co
https://orcid.org/0000-0002-7771-7179
Perfil Google Scholar
Jorge Enrique Pérez Cárdenas
Universidad de Caldas
labmicro@ucaldas.edu.co
https://orcid.org/0000-0002-7829-6505
Perfil Google Scholar

Abstract

Introduction: Due to the epidemiological panorama of candidiasis caused by Candida tropicalis and the marked resistance generated towards azoles, it is necessary to deepen the knowledge of virulence and drug resistance mechanisms. Objective: To synthesize the virulence factors of Candida spp. and the molecular mechanisms of azole resistance expressed by Candida tropicalis. Materials and methods: The bibliographical search were conducted in the PubMed database and manuscripts were selected according to the critical analysis criteria proposed by the PRISMA instrument. The guiding question for the search was: What are the virulence factors of Candida spp, and the azole resistance mechanisms expressed by the species C. tropicalis? The results were organized into two categories: Virulence factors of Candida spp and molecular mechanisms of resistance to azoles. Results: The virulence factors of Candida spp. are represented by toxin and enzyme production, biofilm formation, environmental modification, filamentation, and hyphal growth. The mechanisms of resistance to azoles expressed by C. tropicalis are mainly determined by overexpression of the ERG11 and MDR1 genes and by mutations in the ERG11 gene. Conclusion: Virulence factors are similar among Candida species and the molecular mechanisms of resistance to azoles expressed by C. tropicalis fundamentally result in decreased affinity for the pharmacological target and lower intracellular concentration of the drug.

1. Arendrup MC. Candida and Candidaemia. Susceptibility and epidemiology. Dan Med J.2013;60(11):B4698. https://pubmed.ncbi.nlm.nih.gov/24192246/

2. Kaur, H., Singh, S., Rudramurthy, S. M., Ghosh, A. K., Jayashree, M., Narayana, Y., ... & Chakrabarti, A. (2020). Candidaemia in a tertiary care centre of developing country: Monitoring possible change in spectrum of agents and antifungal susceptibility. Indian journal of medical microbiology, 38(1),
109-116. https:// 10.4103/ijmm.IJMM_20_112

3. Barac A, Cevik M, Colovic N, Lekovic D, Stevanovic G, Micic J, et al. Investigation of a healthcareassociated Candida tropicalis candidiasis cluster in a hematology unit and a systematic review of nosocomial outbreaks. Mycoses. 2020;63(4):326-33. https://doi.org/10.1111/myc.13048

4. León CP de, Ernesto L. Infecciones en huéspedes inmunocomprometidos. Rev Méd Hered. 2013;24(2):156-61

5. Chakraborty M, Banu H, Gupta MK. Epidemiology and Antifungal Susceptibility of Candida Species Causing Blood Stream Infections: An Eastern India Perspective. J Assoc Physicians India. 2021;69(8):11-2. https://pubmed.ncbi.nlm.nih.gov/34472809/

6. Treviño-Rangel R de J, Bodden-Mendoza BA, Montoya AM, Villanueva-Lozano H, Elizondo-Zertuche M, Robledo-Leal E, et al. Phenotypical characterization, and molecular identification of clinical isolates of Candida tropicalis. Rev Iberoam Micol. 2018;35(1):17-21. https://doi.org/10.1016/j.riam.2017.05.002

7. Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. noviembre de 2010;14(11):e954-966.
https://doi.org/10.1016/j.ijid.2010.04.006

8. Tan TY, Hsu LY, Alejandria MM, Chaiwarith R, Chinniah T, Chayakulkeeree M, et al. Antifungal susceptibility of invasive Candida bloodstream isolates from the Asia-Pacific region. Med Mycol. 2016;54(5):471-7. https://doi.org/10.1093/mmy/myv114

9. Motoa G, Muñoz JS, Oñate J, Pallares CJ, Hernández C, Villegas MV. Epidemiology of Candida isolates from Intensive Care Units in Colombia from 2010 to 2013. Rev Iberoam Micol. 2017;34(1):17-22.https://doi.org/10.1016/j.riam.2016.02.006

10. Chander J, Singla N, Sidhu SK, Gombar S. Epidemiology of Candida bloodstream infections: experience of a tertiary care center in North India. J Infect Dev Ctries. 16 de septiembre de 2013;7(9):670-5.https://doi.org/10.3855/jidc.2623

11. Verma AK, Prasad KN, Singh M, Dixit AK, Ayyagari A. Candidaemia in patients of a tertiary health care hospital from north India. Indian J Med Res. marzo de 2003;117:122-8. https://pubmed.ncbi.nlm.nih.gov/14575178/

12. Cortés, J. A., Reyes, P., Gómez, C., Buitrago, G., & Leal, A. L. (2011). Fungal bloodstream infections in tertiary care hospitals in Colombia. Revista iberoamericana de micologia, 28(2), 74-78. https://doi.org/ :10.1016/j.riam.2010.12.002

13. Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol. 2017;8:1927. https://doi.org/10.3389/fmicb.2017.01927

14. Xu J. Is Natural Population of Candida tropicalis Sexual, Parasexual, and/or Asexual? Front Cell Infect Microbiol. 2021;11:751676. https://doi.org/10.3389/fcimb.2021.751676

15. Seervai RNH, Jones SK, Hirakawa MP, Porman AM, Bennett RJ. Parasexuality and ploidy change in Candida tropicalis. Eukaryot Cell. diciembre de 2013;12(12):1629-40. https://doi.org/10.1128/EC.00128-13

16. Oliveira JS de, Pereira VS, Castelo-Branco D de SCM, Cordeiro R de A, Sidrim JJC, Brilhante RSN, et al. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Candida tropicalis. Can J Microbiol. 2020;66(6):377-88. https://doi.org/10.1139/cjm-2019-0531

17. Parra L, Cárdenas J. Mecanismos de resistencia a fluconazol expresados por Candida glabrata: una situación para considerar en la terapéutica. Investig En Enferm Imagen Desarro. 2020;22. https://doi.org/10.11144/Javeriana.ie22.mrfe

18. Nocua-Báez LC, Uribe-Jerez P, Tarazona-Guaranga L, Robles R, Cortés JA, Nocua-Báez LC, et al. Azoles de antes y ahora: una revisión. Rev Chil Infectol. 2020;37(3):219-30. http://dx.doi.org/10.4067/s0716-10182020000300219

19. Pahwa N, Kumar R, Nirkhiwale S, Bandi A. Species distribution and drug susceptibility of Candida in clinical isolates from a tertiary care center at Indore. Indian J Med Microbiol. marzo de 2014;32(1):44-8. https://doi.org/10.4103/0255-0857.124300

20. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 15 de febrero de 2016;62(4):e1-50. https://
doi.org/10.1093/cid/civ933

21. Carvalho VO, Okay TS, Melhem MSC, Szeszs MW, Negro GMB del. The new mutation L321F in «Candida albicans» ERG11 gene may be associated with fluconazole resistance. Rev Iberoam Micol. 2013;30(3):209-12. https://doi.org/10.1016/j.riam.2013.01.001

22. Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S. The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryot Cell. diciembre de 2015;14(12):1154-64. https://doi.org/10.1128/EC.00137-15

23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535

24. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol. 2021;59(12):1127-44.https://doi.org/10.1093/mmy/myab053

25. Richardson JP, Brown R, Kichik N, Lee S, Priest E, Mogavero S, et al. Candidalysins Are a New Family of Cytolytic Fungal Peptide Toxins. mBio. 2022;13(1):e0351021. . https://doi.org/10.1128/mbio.03510-21

26. Naglik JR, Gaffen SL, Hube B. Candidalysin: discovery and function in Candida albicans infections.Curr Opin Microbiol. 2019;52:100-9. https://doi.org/10.1016/j.mib.2019.06.002

27. König A, Hube B, Kasper L. The Dual Function of the Fungal Toxin Candidalysin during Candida albicans-Macrophage Interaction and Virulence. Toxins. 2020;12(8):469. https://doi.org/10.3390/toxins12080469

28. Batista JM, Birman EG, Cury AE. Susceptibility to antifungal drugs of Candida albicans strains isolated from patients with denture stomatitis. Rev Odontol Universidade São Paulo. diciembre de 1999;13(4):343-8. https://doi.org/10.1590/S0103-06631999000400005

29. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28. https://doi.org/10.4161/viru.22913

30. Gonçalves B, Azevedo N, Osório H, Henriques M, Silva S. Revealing Candida glabrata biofilm matrix proteome: global characterization and pH response. Biochem J. 2021;478(4):961-74

31. https://doi.org/10.1042/BCJ20200844

32. Alves R, Sousa-Silva M, Vieira D, Soares P, Chebaro Y, Lorenz MC, et al. Carboxylic Acid Transporters in Candida Pathogenesis. mBio. 2020;11(3):e00156-20. https://doi.org/10.1128/mBio.00156-20

33. Kämmer P, McNamara S, Wolf T, Conrad T, Allert S, Gerwien F, et al. Survival Strategies of Pathogenic Candida Species in Human Blood Show Independent and Specific Adaptations. mBio.2020;11(5):e02435-20. https://doi.org/10.1128/mBio.02435-20

34. Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, et al. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence. 2022;13(1):191-214. https://doi.org/10.1080/21505594.2022.2026037


35. Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol. 2014;69(5):733-9. https://doi.org/10.1007/s00284-014-0651-3

36. Connolly LA, Riccombeni A, Grózer Z, Holland LM, Lynch DB, Andes DR, et al. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol. octubre de 2013;90(1):36-53. https://doi.org/10.1111/mmi.12345

37. Galán-Ladero MÁ, Blanco-Blanco MT, Fernández-Calderón MC, Lucio L, Gutiérrez-Martín Y, Blanco MT, et al. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast. 2019;36(2):107-15. https://doi.org/10.1002/yea.3370

38. Jiang C, Li Z, Zhang L, Tian Y, Dong D, Peng Y. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells. Microbiol Res. 2016;192:65-72. https://doi.org/10.1016/j.micres.2016.06.003

39. Chen J, Hu N, Xu H, Liu Q, Yu X, Zhang Y, et al. Molecular Epidemiology, Antifungal Susceptibility, and Virulence Evaluation of Candida Isolates Causing Invasive Infection in a Tertiary Care Teaching Hospital. Front Cell Infect Microbiol. 2021;11:721439. https://doi.org/10.3389/fcimb.2021.721439

40. Moralez ATP, França EJG, Furlaneto-Maia L, Quesada RMB, Furlaneto MC. Phenotypic switching in Candida tropicalis: association with modification of putative virulence attributes and antifungal drug sensitivity. Med Mycol. 2014;52(1):106-14. https://doi.org/10.3109/13693786.2013.825822

41. Lew SQ, Lin CH. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis. Curr Genet. 2021;67(2):249-54. https://doi.org/10.1007/s00294-020-01138-z

42. Kumar R, Saraswat D, Tati S, Edgerton M. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis. Infect Immun. 7 de enero de 2015;83(7):2614-26. https://doi.org/10.1128/IAI.00282-15

43. Bader O. Looking into the virulence of Candida parapsilosis. Virulence. 15 de mayo de 2014;5(4):457-9. https://doi.org/10.4161/viru.28955

44. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP, et al. Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and hemolysin activities than non-albicans Candida isolates. Trop Biomed. diciembre de 2013;30(4):654-62. https://pubmed.ncbi.nlm.nih.gov/24522136/

45. Rossoni RD, Barbosa JO, Vilela SFG, Jorge AOC, Junqueira JC. Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res. 2013;27(6):484-9. https://doi.org/10.1590/S1806-83242013000600007

46. Noori M, Dakhili M, Sepahvand A, Davari N. Evaluation of esterase and hemolysin activities of different Candida species isolated from vulvovaginitis cases in Lorestan Province, Iran. Curr Med Mycol. 2017;3(4):1-5. https://doi.org/10.29252/cmm.3.4.1

47. Amani D, Emira N, Ismail T, Jamel E, Dominique S, Rosa DC, et al. Extracellular enzymes and adhesive properties of medically important Candida spp. strains from landfill leachate. MicrobPathog. 2018;116:328-34. https://doi.org/10.1016/j.micpath.2018.01.042

48. Silva RC, Padovan ACB, Pimenta DC, Ferreira RC, da Silva CV, Briones MRS. Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol. 2014;4:66. https://doi.org/10.3389/fcimb.2014.00066

49. Tsang PWK, Fong WP, Samaranayake LP. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage. PloS One. 2017;12(12):e0189219. https://doi.org/10.1371/journal.pone.0189219

50. Sharma Y, Chumber SK, Kaur M. Studying the Prevalence, Species Distribution, and Detection of In vitro Production of Phospholipase from Candida Isolated from Cases of Invasive Candidiasis. J Glob Infect Dis. 2017;9(1):8-11. https://doi.org/10.4103/0974-777X.199995

51. Udayalaxmi J, Shenoy N. Comparison Between Biofilm Production, Phospholipase and Haemolytic Activity of Different Species of Candida Isolated from Dental Caries Lesions in Children. J Clin Diagn Res JCDR. 2016;10(4):DC21-23. https://doi.org/10.7860/JCDR/2016/17019.7643

52. Riceto ÉB de M, Menezes R de P, Penatti MPA, Pedroso RDS. Enzymatic and hemolytic activity in different Candida species. Rev Iberoam Micol. 2015;32(2):79-82. https://doi.org/10.1016/j.riam.2013.11.003

53. Ramos L de S, Barbedo LS, Braga-Silva LA, dos Santos ALS, Pinto MR, Sgarbi DB da G. Protease, and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol.2015;32(2):122-5. https://doi.org/10.1016/j.riam.2014.01.003

54. Furlaneto MC, Góes HP, Perini HF, Dos Santos RC, Furlaneto-Maia L. How much do we know about hemolytic capability of pathogenic Candida species? Folia Microbiol (Praha). 2018;63(4):405-12.https://doi.org/10.1007/s12223-018-0584-5

55. Erum R, Samad F, Khan A, Kazmi SU. A comparative study on production of extracellular hydrolytic enzymes of Candida species isolated from patients with surgical site infection and from healthy individuals and their co-relation with antifungal drug resistance. BMC Microbiol. 2020;20(1):368.https://doi.org/10.1186/s12866-020-02045-6

56. Mello VG, Escudeiro H, Weckwerth ACVB, Andrade MI, Fusaro AE, de Moraes EB, et al. Virulence Factors and Antifungal Susceptibility in Candida Species Isolated from Dermatomycosis Patients.Mycopathologia. 2021;186(1):71-80. https://doi.org/10.1007/s11046-020-00509-x

57. Patel PN, Sah P, Chandrashekar C, Vidyasagar S, Venkata Rao J, Tiwari M, et al. Oral Candidal speciation, virulence and antifungal susceptibility in type 2 diabetes mellitus. Diabetes Res ClinPract. 2017;125:10-9. https://doi.org/10.1016/j.diabres.2017.01.001

58. 57 Brilhante RSN, Bittencourt PV, Castelo-Branco D de SCM, de Oliveira JS, Alencar LP de, Cordeiro R de A, et al. Trends in antifungal susceptibility and virulence of Candida spp. from the nasolacrimalduct of horses. Med Mycol. 2016;54(2):147-54. https://doi.org/10.1093/mmy/myv090

59. Seneviratne CJ, Rajan S, Wong SSW, Tsang DNC, Lai CKC, Samaranayake LP, et al. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong. Front Microbiol. 2016;7:216. https://doi.org/10.3389/fmicb.2016.00216

60. Singh DP, Kumar Verma R, Sarswat S, Saraswat S. Non-Candida albicans Candida species: virulence factors and species identification in India. Curr Med Mycol. 2021;7(2):8-13. https://doi.org/10.18502/cmm.7.2.7032

61. El-Kholy MA, Helaly GF, El Ghazzawi EF, El-Sawaf G, Shawky SM. Virulence Factors and Antifungal Susceptibility Profile of C. tropicalis Isolated from Various Clinical Specimens in Alexandria, Egypt. J Fungi. 2021;7(5):351. https://doi.org/10.3390/jof7050351

62. Deorukhkar SC, Saini S, Mathew S. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J Microbiol. 2014;2014:e456878. https://doi.org/10.1155/2014/456878

63. Yu S, Li W, Che J, Bian F, Lu J, Wu Y. Study on virulence factors of Candida tropicalis isolated from clinical samples. Zhonghua liu xing bing xue za zhi. 2015;36(10):1162-6. https://pubmed.ncbi.nlm.nih.gov/26837366/

64. Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, et al. Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. 2018;33(2):113-24.https://doi.org/10.1111/omi.12206

65. Alenzi FQB. Virulence factors of Candida species isolated from patients with urinary tract infection and obstructive uropathy. Pak J Med Sci. 2016;32(1):143-6. https://doi.org/10.12669/pjms.321.8559

66. Negri M, Silva S, Capoci IRG, Azeredo J, Henriques M. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia. 2016;181(3-4):217-24. https://doi.org/10.1007/s11046-015-9964-4

67. Zuza-Alves DL, de Medeiros SSTQ, de Souza LBFC, Silva-Rocha WP, Francisco EC, de Araújo MCB, et al. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil. Front Microbiol.
2016;7:1783. https://doi.org/10.3389/fmicb.2016.01783

68. Udayalaxmi null, Jacob S, D’Souza D. Comparison Between Virulence Factors of Candida albicans and Non-Albicans Species of Candida Isolated from Genitourinary Tract. J Clin Diagn Res JCDR.2014;8(11):DC15-17. https://doi.org/10.7860/JCDR/2014/10121.5137

69. Nouraei H, Pakshir K, ZareShahrabadi Z, Zomorodian K. High detection of virulence factors by Candida species isolated from bloodstream of patients with candidemia. Microb Pathog. 2020;149:104574.https://doi.org/10.1016/j.micpath.2020.104574

70. Vieira de Melo AP, Zuza-Alves DL, da Silva-Rocha WP, Ferreira Canário de Souza LB, Francisco EC, Salles de Azevedo Melo A, et al. Virulence factors of Candida spp. obtained from blood cultures of patients with candidemia attended at tertiary hospitals in Northeast Brazil. J Mycol Medicale. 2019;29(2):132-9. https://doi.org/10.1016/j.mycmed.2019.02.002

71. Atalay MA, Koc AN, Demir G, Sav H. Investigation of possible virulence factors in Candida strains isolated from blood cultures. Niger J Clin Pract. 2015;18(1):52-5. https://doi.org/10.4103/1119-3077.146979

72. Tellapragada C, Eshwara VK, Johar R, Shaw T, Malik N, Bhat PV, et al. Antifungal susceptibility patterns, in vitro production of virulence factors, and evaluation of diagnostic modalities for the speciation of pathogenic Candida from bloodstream infections and vulvovaginal candidiasis. J Pathog. 2014;2014:142864. https://doi.org/10.1155/2014/142864

73. Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 2015;69:71-92. https://doi.org/10.1146/annurev-micro-091014-104330

74. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect Inst Pasteur. 2016;18(5):310-21. https://doi.org/10.1016/j.micinf.2016.01.002

75. Sasani E, Khodavaisy S, Rezaie S, Salehi M, Yadegari MH. The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microb Pathog. 2021;155:104889.https://doi.org/10.1016/j.micpath.2021.104889

76. Sriphannam C, Nuanmuang N, Saengsawang K, Amornthipayawong D, Kummasook A. Anti-fungal susceptibility, and virulence factors of Candida spp. isolated from blood cultures. J Mycol Médicale. 2019;29(4):325-30. https://doi.org/10.1016/j.mycmed.2019.08.001

77. Yu SB, Li WG, Liu XS, Che J, Lu JX, Wu Y. The Activities of Adhesion and Biofilm Formation by Candida tropicalis Clinical Isolates Display Significant Correlation with Its Multilocus Sequence Typing. Mycopathologia. 2017;182(5-6):459-69. https://doi.org/10.1007/s11046-017-0111-2

78. Leerahakan P, Matangkasombut O, Tarapan S, Lam-Ubol A. Biofilm formation of Candida isolates from xerostomic post-radiotherapy head and neck cancer patients. Arch Oral Biol. 2022;142:105495. https://doi.org/10.1007/s11046-017-0111-2

79. Pannanusorn S, Fernandez V, Römling U. Prevalence of biofilm formation in clinical isolates of Candida species causing bloodstream infection. Mycoses. 2013;56(3):264-72. https://doi.org/10.1111/myc.12014

80. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front Microbiol. 2017;7:2173. https://doi.org/10.3389/fmicb.2016.02173

81. Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. Contribution of Clinically Derived Mutations in ERG11 to Azole Resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450-60. https://doi.org/10.1128/AAC.03470-14

82. López-Ávila K, Dzul-Rosado KR, Lugo-Caballero C, Arias-León JJ, Zavala-Castro JE. Mecanismos de resistencia antifúngica de los azoles en Candida albicans. Una revisión. Rev Bioméd. Doi:83. Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update. abril de 2016;22(2):164-81.https://doi.org/10.1093/humupd/dmv049

84. Morales-Pérez M, García-Milian AJ, Morales-Pérez M, García-Milian AJ. Papel de la superfamilia ABC en la resistencia farmacológica. Horiz Sanit. 2017;16(2):93-101. https://doi.org/10.19136/hs.v16i2.1469

85. Fuentes M, Hermosilla G, Alburquenque C, Falconer MA, Amaro J, Tapia C. [Characterization of azole resistance mechanisms in Chilean clinical isolates of Candida albicans]. Rev Chil Infectologia Organo of Soc Chil Infectologia. octubre de 2014;31(5):511-7. https://doi.org/10.4067/s0716-10182014000500001

86. Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25(7):792-8. https://doi.org/10.1016/j.cmi.2019.03.028

87. Sasani E, Yadegari MH, Khodavaisy S, Rezaie S, Salehi M, Getso MI. Virulence Factors and Azole-Resistant Mechanism of Candida Tropicalis Isolated from Candidemia. Mycopathologia.2021;186(6):847-56. https://doi.org/10.1007/s11046-021-00580-y

88. Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother. 2013;68(4):778-85. https://doi.org/10.1093/jac/dks481

89. Fan X, Xiao M, Zhang D, Huang JJ, Wang H, Hou X, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2019;25(7):885-91. https://doi.org/10.1016/j.cmi.2018.11.007

90. Paul S, Singh S, Sharma D, Chakrabarti A, Rudramurthy SM, Ghosh AK. Dynamics of in vitro development of azole resistance in Candida tropicalis. J Glob Antimicrob Resist. -61. https://doi.org/10.1016/j.jgar.2020.04.018

91. Pandey N, Tripathi M, Gupta MK, Tilak R. Overexpression of efflux pump transporter genes and mutations in ERG11 pave the way to fluconazole resistance in Candida tropicalis: A study from a North India region. J Glob Antimicrob Resist. 2020;22:374-8. https://doi.org/10.1016/j.jgar.2020.02.010

92. Silva MC, Cardozo Bonfim Carbone D, Diniz PF, Freitas Fernandes F, Fuzo CA, Santos Pereira Cardoso Trindade C, et al. Modulation of ERG Genes Expression in Clinical Isolates of Candida tropicalis Susceptible and Resistant to Fluconazole and Itraconazole. Mycopathologia. 2020;185(4):675-84. https://doi.org/10.1007/s11046-020-00465-6

93. Jin L, Cao Z, Wang Q, Wang Y, Wang X, Chen H, et al. MDR1 overexpression combined with ERG11 mutations induce high-level fluconazole resistance in Candida tropicalis clinical isolates. BMC Infect Dis. 2018;18(1):162. https://doi.org/10.1186/s12879-018-3082-0

94. El Said M, Badawi H, Gamal D, Salem D, Dahroug H, El-Far A. Detection of ERG11 gene in fluconazole resistant urinary Candida isolates. Egypt J Immunol. 2022;29(4):134-4 https://pubmed.ncbi.nlm.nih.gov/36208042/

95. Choi MJ, Won EJ, Shin JH, Kim SH, Lee WG, Kim MN, et al. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates. Antimicrob Agents Chemother. 2016;60(6):3653-61. https://doi.org/10.1128/AAC.02652-15

96. Paul S, Dadwal R, Singh S, Shaw D, Chakrabarti A, Rudramurthy SM, et al. Rapid detection of ERG11 polymorphism associated azole resistance in Candida tropicalis. PloS One. 2021;16(1):e0245160.https://doi.org/10.1371/journal.pone.0245160

97. Forastiero A, Mesa-Arango AC, Alastruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Pelaez T, et al. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrob Agents Chemother. 10 de enero de 2013;57(10):4769-81. https://doi.
org/10.1128/AAC.00477-13

98. Paul S, Shaw D, Joshi H, Singh S, Chakrabarti A, Rudramurthy SM, et al. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PloS One. 2022;17(7):e0269721. https://doi.org/10.1371/journal.pone.0269721

99. Leepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi.2022;8(10):983. https://doi.org/10.3390/jof8100983

100. Castanheira M, Deshpande LM, Messer SA, Rhomberg PR, Pfaller MA. Analysis of global antifungal surveillance results reveals predominance of Erg11 Y132F alteration among azole-resistant Candida parapsilosis and Candida tropicalis and country-specific isolate dissemination. Int J Antimicrob Agents. 2020;55(1):105799. https://doi.org/10.1016/j.ijantimicag.2019.09.003

101. Keighley C, Gall M, van Hal SJ, Halliday CL, Chai LYA, Chew KL, et al. Whole Genome Sequencing Shows Genetic Diversity, as Well as Clonal Complex and Gene Polymorphisms Associated with Fluconazole Non-Susceptible Isolates of Candida tropicalis. J Fungi Basel Switz. 2022;8(9):896.
https://doi.org/10.3390/jof8090896

102. Benedetti VP, Savi DC, Aluizio R, Adamoski D, Kava V, Galli-Terasawa LV, et al. ERG11 gene polymorphisms and susceptibility to fluconazole in Candida isolates from diabetic and kidney transplant patients. Rev Soc Bras Med Trop. 2019;52:e20180473. https://doi.org/10.1590/0037-8682-0473-2018

103. Arastehfar A, Hilmioğlu-Polat S, Daneshnia F, Hafez A, Salehi M, Polat F, et al. Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping. Front
Microbiol. 2020;11:587278. https://doi.org/10.3389/fmicb.2020.587278

104. Teo JQM, Lee SJY, Tan AL, Lim RSM, Cai Y, Lim TP, et al. Molecular mechanisms of azole resistance in Candida bloodstream isolates. BMC Infect Dis. 2019;19(1):63. https://doi.org/10.1186/s12879-019-3672-5

105. Eddouzi J, Parker JE, Vale-Silva LA, Coste A, Ischer F, Kelly S, et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother.2013;57(7):3182-93. https://doi.org/10.1128/AAC.00555-13

106. Astvad KMT, Sanglard D, Delarze E, Hare RK, Arendrup MC. Implications of the EUCAST Trailing Phenomenon in Candida tropicalis for the In Vivo Susceptibility in Invertebrate and Murine Models. Antimicrob Agents Chemother. 2018;62(12):e01624-18. https://doi.org/10.1128/aac.01624-18

107. Khalifa HO, Watanabe A, Kamei K. Azole and echinocandin resistance mechanisms and genotyping of Candida tropicalis in Japan: cross-boundary dissemination and animal–human transmission of C. tropicalis infection. Clin Microbiol Infect. 2022;28(2):302.e5-302.e8. https://doi.org/10.1016/j.
cmi.2021.10.004

108. Jiang C, Ni Q, Dong D, Zhang L, Li Z, Tian Y, et al. The Role of UPC2 Gene in Azole-Resistant Candida tropicalis. Mycopathologia. 2016;181(11-12):833-8. https://doi.org/10.1007/s11046-016-0050-3

109. You L, Qian W, Yang Q, Mao L, Zhu L, Huang X, et al. ERG11 Gene Mutations and MDR1 Upregulation Confer Pan-Azole Resistance in Candida tropicalis Causing Disseminated Candidiasis in an Acute Lymphoblastic Leukemia Patient on Posaconazole Prophylaxis. Antimicrob Agents Chemother.2017;61(7):e02496-16. https://doi.org/10.1128/AAC.02496-16

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |