Autores/as
Resumen
Las tecnologías de investigación social son un conjunto de aplicaciones y modelos formales que posibilitan el abordaje de problemas sociales mediante métodos cuantitativos y cualitativos no necesariamente estadísticos, un gran campo iconológico de explicaciones visuales (Tufte, 1997), perspectivas transdisciplinares de conocimiento y ambientes de trabajo formal libres de disciplina. Este conjunto de aplicaciones presentan diversos retos y alternativas a los modelos mecánicos, estadísticos e interpretativos en estado puro de las ciencias sociales clásicas. El punto de partida de este trabajo enfatiza en la búsqueda de la sostenibilidad ecosistémica en escenarios urbanos y rurales y su investigación interdisciplinar, a propósito del impacto de las metodologías complejas, sus premisas, aplicaciones de trabajo práctico y conceptualizaciones básicas.
Palabras clave:
Citas
Ariza-Villaverde, A.B., Jiménez-Hornero, F.J. and Ravé, E.G.D. (2013). Multifractal analysis of axial maps applied to the study of urban morphology. Comput Environ Urban Systems, 38, 1-10.
Atmar, W. and Patterson, B.D. (1993). The Measure of Order and Disorder in the Distribution of Species in Fragmented Habitat. Oecologa, 96, 373-382.
Batty, M. (2013). The New Science of Cities. Massachusetts, USA: The MIT Press.
Bascompte, J. and Jordana, P. (2006). The Structure of Plant-Animal M utualistic Networks. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 143-159). New York, USA: Oxford University Press.
Booch, G., Rumbaugh, J. and Jacobson, I. (2005). The Unified Modeling Language User’s Guide. New York, USA: Addison-Wesley.
Borgatti, S. and Everett, M. (1999). Models of core/periphery structures. Social Networks, 21, 375-395.
Bousquet, F. and Le Page, C. (2004). Multi-agent simulations and ecosystem management: A review. Ecol Modell, 176, 313-332.
Brand, S. (2010). Whole Earth Discipline: Why Dense Cities, Nuclear Power, Transgenic Crops, Restored Wildlands, Radical Science, and Geoengineering are Necessary. New York, USA: Atlantic Books.
Cartozo, C.C., Garlaschelli, G. and Caldarelli, G. (2006). Graph Theory and Food Webs. En M. Pascual and J.A. Dunne (Ed.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 93-117). New York, USA: Oxford University Press.
Chen, S.H. and Yeh, C.H. (2002). On the Emergent Properties of Artificial Stock Markets: The Efficient Market Hypothesis and the Rational Expectations Hypothesis. Journal of Economic Behaviour and Organization, 49, 217-239.
Chen, Y. and Feng, J. (2012). Fractal-based exponential distribution of urban density and self-affine fractal forms of cities. Chaos, Solitons & Fractals, 45, 1404-1416.
Chen, Y. and Wang, J. (2013). Multifractal characterization of urban form and growth: The case of Beijing. Environment and Planning B: Urban Analytics and City Science, 40, 884-904.
de Vries, B. and Petersen, A. (2009). Conceptualizing sustainable development: An assessment methodology connecting values, knowledge, worldviews and scenarios. Ecological Economics, 68, 1006-1019.
Egerton, F.N. (2007). Understanding food chains and food webs, 1700-1970. Bulletin of the Ecological Society of America, 88, 50-69.
Feng, J. and Chen, Y. (2010). Spatiotemporal evolution of urban form and land use structure in Hangzhou, China: Evidence from fractals. Environment and Planning B: Urban Analytics and City Science, 37, 838-856.
Forrester, J. et al. (2014). Modeling Social-Ecological Problems in Coastal Ecosystems: A Case Study. Complexity, 19, 73-82.
Frankhauser, P. (2015). From Fractal Urban Pattern Analysis to Fractal Urban Planning Concepts. En M. Helbich, J.J. Arsanjani and M. Leitner (Ed.), Computational Approaches for Urban Environments (pp. 13-48). Geneva, Switzerland: Springer International Publishing.
Gilbert, N. and Troitzsch, K.G. (2005). Simulation for the Social Scientist. Buckingham, United Kingdom: Open University Press.
Gilbert, N., Ahrweiler, P. and Pyka, A. (2010). The SKIN (Simulating Knowledge Dynamics in Innovation Networks) model. Mainz, Germany: Johannes Gutenberg University Mainz, University of Hohenheim.
Gilbert, N., Ahrweiler, P. and Pyka, A. (Ed.). (2014). Simulating Knowledge Dynamics in Innovation Networks. Berlin, Germany: Springer-Verlag.
Harris, M. (1985). Good to Eat: Riddles of Food and Culture. New York, USA: Simon & Schuster.
Higgins, A.J. et al. (2010). Applying operations research to agricultural value chain to achieve a balance in efficiency and resilience. Journal of the Operations Research Society, 61, 964-973.
Holland, J. (1995). Hidden Order: How Adaptation Builds Complexity. Reading, England: Addison-Wesley.
ICSU. (2016). A Draft Framework for Understanding SDG Interactions. Recuperado de https://icsu.org/cms/2017/05/SDG-interactions-working-paper.pdf.
John, B.E., Vera, A.H. and Newell, A. (1994). Toward real-time GOMS: A model of expert behavior in a highly interactive task. Behavior and Information Technology, 13, 255-267.
Kim, J., Lerch, F. and Simon, H.A. (1995). Internal representation and rule development in object-oriented design. ACM Transactions on Computer-Human Interaction, 2 (4), 357-390.
Klüver, J. (1996). Simulations of Self Organizing Social Systems. En F. Faulbaum and W. Bandilla (Ed.), SoftStat 95. Advances in Statistical Software (pp. 425-432). Stuttgart, Germany: Lucius.
Lansing, J.S. (2006). Perfect Order: Recognizing Complexity in Bali. New Jersey, USA: Princeton University Press.
Lansing, J.S. et al. (2017). Adaptive self-organization of Bali’s ancient rice terraces. Proceedings of the National Academy of Sciences, 114 (25), 6504-6509.
LeBaron, B. (2002). Short Memory Traders and Their Impact on Group Learning in Financial Markets. Proceedings of the U.S. National Academy of Sciences, 99, 7201-7206.
LeBaron, B., Arthur, W.B. and Palmer, R. (1999). Time Series Properties of an Artificial Stock Market. Journal of Economic Dynamics and Control, 23, 1487-1516.
Moss, S. and Edmonds, B. (2005). Sociology and Simulation: Statistical and Qualitative Cross-Validation. AJS, 110 (4), 1095-1131.
Murcott, A. (Ed.). (1983). The Sociology of Food and Eating: Essays on the Sociological Significance of Food. Aldershot, England: Gower.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, USA: Harvard University Press.
Nilsson, M., Griggs, D. and Visbeck, M. (2016). Map the interactions between Sustainable Development Goals. Nature, 534, 320-322.
Northrop, R.B. and Connor, A.N. (2013). Ecological Sustainability. Understanding Complex Issues. Boca Raton, USA: CRC Press, Taylor & Francis Group.
Pascual, M. and Dunne, J.A. (Ed.). (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. New York, USA: Oxford University Press.
Pierce, W.D., Cushman, R.A. and Hood, C.E. (1912). The insect enemies of the cotton boll weevil. U.S. Department of Agriculture, Bureau of Entomology Bulletin, 100, 1-99.
Poincaré, H. (1908). Science et Méthode. Paris, France: Flammarion.
Reeves, C.R. (1993). Using genetic algorithms with small populations. En S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign (pp. 92-99). San Mateo, USA: Morgan Kaufmann.
Reynolds, G.R. (1994). An Introduction to Cultural Algorithms. Recuperado de http://ai.cs.wayne.edu/ai/availablePapersOnLine/IntroToCA.pdf.
Reynolds, R. and Kobti, Z. (2003). A Multi-Agent Simulation Using Cultural Algorithms: The Effect of Culture on the Resilience of Social Systems. Recuperado de http://ieeexplore.ieee.org/document/1299917/?reload=true.
Reynoso, C. (2006). Complejidad y caos: una exploración antropológica. Buenos Aires, Argentina: Editorial SB.
Reynoso, C. (2013). Etnicidad y redes territoriales: perspectivas de complejidad. En B. Nates (Coord.), La frontera, las fronteras: diálogos transversales en estudios territoriales contemporáneos (pp. 63-90). Riohacha, Colombia: RETEC.
Salingaros, N.A. (2005). Principles of Urban Structure. Amsterdam, Netherlands: Techne Press. Schelling, T. (1978). Micromotives and Macrobehavior. New York, USA: Norton.
Sibertin-Blanc, C. et al. (2013). SocLab: A Framework for the Modeling, Simulation and Analysis of Power in Social Organizations. Journal of Artificial Societies and Social Simulation, 16 (4). Recuperado de http://jasss.soc.surrey.ac.uk/16/4/8.html.
Suleiman, R., Troitzsch, K.G. and Gilbert, N. (Ed.). (2000). Tools and Techniques for Social Science Simulation. Heidelberg, Germany: Physica-Verlag.
Tufte, E.R. (1997). Visual Explanations. Images and Quantities, Evidence and Narrative. Cheshire/ Connecticut, USA: Graphics Press.
von Bertalanffy, L. (1976). Teoría general de los sistemas. Fundamentos, desarrollo, aplicaciones. Buenos Aires, Argentina: Fondo de Cultura Económica.
Wells, J. (2013). Complexity and Sustainability. New York, USA: Routledge.
Wilensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling. Modeling Natural, Social, and Engineered Complex Systems with NetLogo. Cambridge, USA: The MIT Press.