DOI: 10.17151/luaz.2020.50.11
How to Cite
Agudelo Valencia, R. N. ., Ovalle González, D. P. ., & Rodriguez Rodriguez, L. F. . (2020). Applicability of photo-fenton process (visible-light) in the degradation of sulfur and cod from tannery wastewater. Revista Luna Azul (On Line), (50), 215–228. https://doi.org/10.17151/luaz.2020.50.11

Authors

Rafael Nikolay Agudelo Valencia
Universidad Libre
rafaeln.agudelov@unilibre.edu.co
https://orcid.org/0000-0002-6646-7725
Perfil Google Scholar
Diana Paola Ovalle González
Universidad Libre
dianap-ovalleg@unilibre.edu.co
https://orcid.org/0000-0001-9832-1010
Perfil Google Scholar
Luis Felipe Rodriguez Rodriguez
Universidad Libre
luisf.rodriguezr@unilibrebog.edu.co
Perfil Google Scholar

Abstract

Leather production is constituted as an activity of central importance, not only for the economy but for a social and cultural meaning, however, the quality of the waterbodies in which is poured the wastewater proceeded from this industry is affected by the high amount of pollutant load. Objective: decrease the level of concentration of sulfurs and COD, evaluating physical and chemical conditions of the tannery wastewater without treatment, clarified and treated. Materials and methods: an advanced oxidation process is proposed for the degradation of these substances, dosing peroxide of hydrogen and ferric chloride as catalyst (Fenton's reagent) in the presence of LED lamps of visible light as source of energy for the pollutant’s photolysis. The experimental design was realized for a reaction time of 6 hours, there was analyzed the effect of the pH and the dose of peroxide (H2O2 and FeCl3) and the responses surfaces were percentage of sulfur and DQO removal from wastewater treatment. Results: It was obtained an optimal removal of 73,5 % for sulfurs in conditions of initial solution pH of 5 and dose of H2O2 of 40µl and 56 % of COD´s removal for an initial pH of 6 with applied dose of H2O2 of 60µl, although it is remarkable that the response variables depend and change in relation to the processes’ factors according the ANOVA statistics results. Conclusion: For sulfur removal the best results are obtained when the initial pH value range between 5 and 6 units, while for COD, the removal percentage depends on the H2O2 applied doses, besides, the use of visible radiation supplied by LED lamps to intensify the oxidation process turns out favorable according with the stoichiometrical analysis.

Aboulhassan, M. A., Souabi, S. & Yaacoubi, A. (2008). Pollution reduction and biodegradability index improvement of tannery effluents. Int. J. Environ. Sci. Tech, 5(1), 11–16.

Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51–59. https://doi.org/10.1016/S0920-5861(99)00102-9.

APHA., AWWA & WPC. (1995). Standard Methods for the Examination of Water and Wastewater (20th Ed). Washington: AMERICAN PUBLIC HEALTH ASSOCIATION.

Artuz, L. A., Martínez, M. S. & Morales, C. J. (2011). Las industrias curtiembres y su incidencia en la contaminación del río Bogotá. Isocuanta, 1(1), 43–53. Retrieved from Link.

Bajza, E., Hitrec, P. & Muic, M. (2005). Influence of different concentrations of Al2(SO4)3 and anionic polyelectrolytes on tannery wastewater flocculation. Desalination, 171(1), 13–20. https://doi.org/10.1016/J.DESA1.2004.04.003.

Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R. & Peralta-Hernández, J. M. (2017). Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Separation and Purification Technology, 172, 296–302. https://doi.org/10.1016/j.seppur.2016.08.029.

Cuartas-Uribe, B., Iborra-Clar, A., Bes-Piá, A., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V. & Iborra-Clar, M. I. (2006). Nanofiltration of a simulated tannery wastewater: influence of chlorides concentration. Desalination, 191(1–3), 132–136. https://doi.org/10.1016/J.DESAL.2005.05.025.

Deghles, A. & Kurt, U. (2016). Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chemical Engineering and Processing: Process Intensification, 104, 43–50. https://doi.org/10.1016/j.cep.2016.02.009.

Ganesh, R., Balaji, G. & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor—Respirometric assessment. Bioresource Technology, 97(15), 1815–1821. https://doi.org/10.1016/J.BIORTECH.2005.09.003.

Gutiérrez-Pulido, H. & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos. Recovered from https://doi.org/10.1017/CBO9781107415324.004.

Instituto de Hidrología, Meteorología, y Estudios Ambientales IDEAM. (2007). Toma de muestras de aguas residuales: instructivo para la toma de muestras de aguas residuales. Recuperado de: Link

Jian, S., Wenyi, T. & Wuyong, C. (2011). Kinetics of enzymatic unhairing by protease in leather industry. Journal of Cleaner Production, 19(4), 325–331. https://doi.org/10.1016/J.JCLEPRO.2010.10.011.

Nivya, T. K. & Pieus, T. M. (2016). Comparison of Photo ElectroFenton Process ( PEF ) and combination of PEF Process and Membrane Bioreactor in the treatment of Landfill Leachate. Procedia Technology, 24, 224–231. https://doi.org/10.1016/j.protcy.2016.05.030.

Rubio-Clemente, A., Chica, E. L. & Peñuela, G. A. (2014). Application of Fenton process for treating petrochemical. Wastewater, 16(2), 211–223. https://doi.org/10.1016/S1135-2523(12)60123- 3.

Saxena, S., Rajoriya, S., Saharan, V. K. & George, S. (2018). An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent. Ultrasonics Sonochemistry, 44, 299–309. https://doi.org/10.1016/j.ultsonch.2018.02.035.

Schrank, S. G., José, H. J., Moreira, R. F. P. M. & Schröder, H. F. (2005). Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere, 60(5), 644–655. https://doi.org/10.1016/j.chemosphere.2005.01.033.

Suthanthararajan, R., Ravindranath, E., Chits, K., Umamaheswari, B., Ramesh, T. & Rajamam, S. (2004). Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination, 164(2), 151–156. https://doi.org/10.1016/S0011-9164(04)00174-2.

Tunay, O., Kabdasli, I., Arslan-Alaton, I., & Olmez-Hanci, T. (2010). Chemical Oxidation Applications for Industrial Wastewaters. Reino Unido.IWA.

Osorio Muñoz, L.C. (2014). Plan estratégico en las curtiembres de Villapinzón: competitividad e innovación en la cadena productiva del cuero “(Producción más limpia, asociatividad y desarrollo de alternativas de manejo y aprovechamiento de RS)”. Universidad Nacional de Colombia, Bogotá, Colombia.

Vilardi, G., Rodriguez-Rodriguez, J., Ochando Pulido, J. M., Verdone, N. & Di Palma, L. (2018). Pilot-Scale application of a real Tannery wastewater treatment by Fenton oxidation: Fe(II) and nZVI catalyst comparison and kinetic modelling. Process Safety and Environmental Protection, 117, 629–638. https://doi.org/10.1016/j.psep.2018.06.007.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |