Autores/as
Resumen
Introducción: Malassezia, un género de levaduras lipofílicas y lipodependientes, puede desencadenar fungemia en pacientes con infecciones sistémicas, especialmente en recién nacidos prematuros en la Unidad de Cuidados Intensivos Neonatal (UCIN), sometidos a tratamientos amplios como antibióticos, nutrición parenteral prolongada y catéter venoso central (CVC). Objetivo: Realizar una evaluación de la eficiencia de los medios de cultivo fúngicos empleados en el aislamiento de levaduras lipodependientes, pertenecientes al género Malassezia, con el fin de garantizar un diagnóstico preciso de las fungemias asociadas a estas especies reportadas en una ventana de medición comprendida entre 2014 y 2023. Materiales y métodos: Se efectuó una revisión minuciosa conforme a las directrices de la declaración PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis), complementada con un análisis metodológico según las directrices STROBE (fortalecimiento de la notificación de estudios observacionales en epidemiología, por sus siglas en inglés), abarcando un total de 16 estudios epidemiológicos de naturaleza transversal, observacional y descriptiva. Estos estudios se centraron en la detección de la presencia de Malassezia spp. en muestras clínicas, detallando los métodos empleados para el aislamiento de cepas de Malassezia spp. causante de fungemia. Resultados: De un total de 1335 publicaciones, provenientes de cuatro bases de datos, se seleccionaron 16 estudios significativos que abordaron la presencia de M. furfur, M. restricta, M. pachydermatis, M. globosa y M. sympodialis. Los medios de cultivo destacados fueron Agar Dextrosa Sabouraud, Agar mDixon y Agar FastFung. Conclusión: La detección precisa y temprana de Malassezia spp., mediante métodos de aislamiento complementados por diagnóstico molecular, no solo es crucial para orientar el tratamiento, sino que también desempeña un papel fundamental en la gestión efectiva de diversas enfermedades dermatológicas asociadas a Malassezia spp.
Palabras clave
Citas
2. Abdillah, A. and Ranque, S. (2021). Chronic diseases associated with Malassezia yeast. Journal of Fungi, 7(10), 855. https://doi.org/10.3390/jof7100855
3. Al-Sweih, N., Ahmad, S., Joseph, L., Khan, S. and Khan, Z. (2014). Malassezia pachydermatis fungemia in a preterm neonate resistant to fluconazole and flucytosine. Medical Mycology Case Reports, 5, 9-11. https://doi.org/10.1016/j.mmcr.2014.04.004
4. Arendrup, M. C., Boekhout, T., Akova, M., Meis, J. F., Cornely, O. A. and Lortholary, O. (2014). ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clinical Microbiology and Infection, 20(Spl 3), 76-98. https://doi.org/10.1111/1469-0691.12360
5. Atsü, N., Ergin, Ç., Caf, N., Türkoğlu, Z., Döğen, A. and İlkit, M. (2022). Effectiveness of FastFung agar in the isolation of Malassezia furfur from skin samples. Mycoses, 65(7), 704-708. https://doi.org/10.1111/myc.13450
6. Campigotto, A., Richardson, S. E., Sebert, M., McElvania TeKippe, E., Chakravarty, A. and Doern, C.D. (2016). Low utility of paediatric isolator blood culture system for detection of fungemia in children:a 10-year review. Journal of Clinical Microbiology, 54(9). https://doi.org/10.1128/JCM.00578-16
7. Celis, A. M., Vos, A. M., Triana, S., Medina, C. A., Escobar, N., Restrepo, S., Wösten, H. A. B. and De Cock, H. (2017). Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. Journal of Microbiological Methods, 134, 1-6. https://doi.org/10.1016/j.mimet.2017.01.001
8. Chen, I. L., Chiu, N. C., Chi, H., Hsu, C. H., Chang, J. H., Huang, D. and Huang, F. Y. (2017). Changing of bloodstream infections in a medical center neonatal intensive care unit. Journal of Microbiology, Immunology and Infection, 50(4), 514-520. https://doi.org/10.1016/j.jmii.2015.08.023
9. Chen, I. T., Chen, C. C., Huang, H. C., Kuo and K. C. (2020). Malassezia furfur emergence and candidemia trends in a neonatal intensive care unit during 10 years. Advances in Neonatal Care, 20(1), E3-E8. https://doi.org/10.1097/ANC.0000000000000640
10. Didehdar, M., Sayed, A., Mehbod, A., Eslamirad, Z., Mosayebi, M., Hajihossein, R., Ghorbanzade, B. and Khazaei, M. (2014). Identification of Malassezia species isolated from patients with pityriasis versicolor using PCR-RFLP method in Markazi province, Central Iran. Iranian Journal of Public Health, 43(5), 682-686.
11. Diongue, K., Kébé, O., Faye, M. D., Samb, D., Diallo, M. A., Ndiaye, M., Seck, M. C., Badiane, A. S., Ranque, S. y Ndiaye, D. (2018). MALDI-TOF MS identification of Malassezia species isolated from patients with pityriasis versicolor at the seafarers’ medical service in Dakar, Senegal. Journal the Mycologie Médicale, 28(4), 590-593. https://doi.org/10.1016/j.mycmed.2018.09.007
12. Eghtedarnejad, E., Khajeh, S., Zomorodian, K., Ghasemi, Z., Yazdanpanah, S. and Motamedi, M. (2023). Direct molecular analysis of Malassezia species from the clinical samples of patients with pityriasis versicolor. Current Medical Mycology, 9(1), 28-31. https://doi.org/10.18502/CMM.2023.345029.1398
13. Gholami, M., Mokhtari, F. and Mohammadi, R. (2020). Identification of Malassezia species using direct PCR-sequencing on clinical samples from patients with pityriasis versicolor and seborrheic dermatitis. Current Medical Mycology. https://doi.org/10.18502/CMM.6.3.3984
14. Haddaway, N. R., Page, M. J., Pritchard, C. C. and McGuinness, L. A. (2022). PRISMA 2020: An R package and shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Systematic Reviews, 18(2), e1230. https://doi.org/10.1002/cl2.1230
15. Hadrich, I., Khemakhem, N., Ilahi, A., Trabelsi, H., Sellami, H., Makni, F., Neji, S. and Ayadi, A. (2023). Genotypic Analysis of the population structure in Malassezia globosa and Malassezia restricta. Journal of Fungi, 9(2), 263. https://doi.org/10.3390/jof9020263
16. Hamdino, M., Saudy, A. A., El-Shahed, L. H. and Taha, M. (2022). Identification of Malassezia species isolated from some Malassezia associated skin diseases. Journal of Medical Mycology, 32(4), 101301. https://doi.org/10.1016/j.mycmed.2022.101301
17. Harada, K., Saito, M., Sugita, T. and Tsuboi, R. (2015). Malassezia species and their associated skin diseases. The Journal of Dermatology, 42(3), 250-257. https://doi.org/10.1111/1346-8138.12700
18. Hobi, S., Cafarchia, C., Romano, V. and Barrs, V. R. (2022). Malassezia: zoonotic implications, parallels and differences in colonization and disease in humans and animals. Journal of Fungi, 8(7), 708. https://doi.org/10.3390/jof8070708 Prohic, A., Kuskunovic-Vlahovljak, S., Sadikovic, T. and Cavaljuga, S. (2015). The prevalence and species composition of Malassezia yeasts in patients with clinically suspected onychomycosis. Medical Archives, 69(2), 81-84. https://doi.org/10.5455/medarh.2015.69.81-84.
19. Honnavar P., Dogra, S., Handa, S., Chakrabarti, A. and Rudramurthy, S. M. (2020). Molecular identification and quantification of Malassezia species isolated from Pityriasis Versicolor. Indian Dermatology Online Journal, 11(2), 167-170. https://doi.org/10.4103/idoj.IDOJ_142_19
20. Honnavar, P., Ghosh, A. K., Paul, S., Shankarnarayan, S. A., Singh, P., Dogra, S., Chakrabarti, A. and Rudramurth, S. M. (2018). Identification of Malassezia species by MALDI-TOF MS after expansion of database. Diagnostic Microbiology and Infectious Disease, 92(2), 118-123. https://doi.org/10.1016/j.diagmicrobio.2018.05.015
21. Iatta, R., Battista, M., Miragliotta, G., Boekhout, T., Otranto, D. and Cafarchia, C. (2018). Blood culture procedures and diagnosis of Malassezia furfur bloodstream infections: strength and weakness. Medical Mycology, 56(7), 828-833. https://doi.org/10.1093/mmy/myx122
22. Iatta, R., Cafarchia, C., Cuna, T., Montagna, O., Laforgia, N., Gentile, O., Rizzo, A., Boekhout, T., Otranto, D. and Montagna, M. T. (2014). Bloodstream infections by Malassezia and Candida species in critical care patients. Medical Mycology, 52(3), 264-269. https://doi.org/10.1093/mmy/myt004
23. Iatta, R., Figueredo, L. A., Montagna, M. T., Otranto, D. and Cafarchia, C. (2014). In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. Journal of Medical Microbiology, 63(11), 1467-1473. https://doi.org/10.1099/jmm.0.078709-0
24. Iatta, R., Immediato, D., Montagna, M. T., Otranto, D. and Cafarchia, C. (2015). In vitro activity of two amphotericin B formulations against Malassezia furfur strains recovered from patients with bloodstream infections. Medical Mycology, 53(3), 1-6. https://doi.org/10.1093/mmy/myu089
25. Ilahi, A., Hadrich, I., Neji, S., Trabelsi, H., Makni, F. and Ayadi, A. (2017). Real-time PCR identification of six Malassezia species. Current Microbiology, 74, 671-677. https://doi.org/10.1007/s00284-017-1237-7
26. Jagielski, T., Rup, E., Ziółkowska, A., Roeske, K., Macura, A. B. and Bielecki, J. (2014). Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatology, 14(3). https://doi.org/10.1186/1471-5945-14-3
27. Lee, J., Cho, Y. G., Kim, D. S., Choi, S. I. and Lee, H. S. (2019). First case of catheter-related Malassezia pachydermatis fungemia in an adult. Annals of Laboratory Medicine, 39(1), 99-101. https://doi.org/10.3343/alm.2019.39.1.99
28. Pedrosa, A. F., Lisboa, C. and Gonçalves Rodrigues A. (2018). Malassezia infections with systemic involvement: figures and facts. The Journal of Dermatology, 45(11), 1278-1282. https://doi.org/10.1111/1346-8138.14653
29. Prohic, A., Jovovic Sadikovic, T., Krupalija Fazlic, M. and Kuskunovic Vlahovljak S. (2015). Malassezia species in healthy skin and in dermatological conditions. International Journal of Dermatology, 55(5), 494-504. https://doi.org/10.1111/ijd.13116
30. Rathie, B., Theelen, B., Laurence, M. and Shapiro, R. S. (2023). Antimicrobial susceptibility testing for three Malassezia species. Microbiology Spectrum, 11. https://doi.org/10.1128/spectrum.05076-22
31. Rhimi, W., Theelen, B., Boekhout, T., Otranto, D. and Cafarchia, C. (2020). Malassezia spp. Yeasts of emerging concern in fungemia. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00370
32. Saunte, D. M., Gaitanis, G. and Hay, R. J. (2020). Malassezia-associated skin diseases, the use of diagnostics and treatment. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00112
33. Sosa, M. A., Rojas, F., Mangiaterra, M. and Giusiano, G. (2013). Prevalencia de especies de Malassezia asociadas a lesiones de Dermatitis seborreica en pacientes de Argentina. Revista Iberoaméricana de Micología, 30(4), 239-242. https://doi.org/10.1016/j.riam.2013.02.002
34. Sparber, F., De Gregorio, C., Steckholzer, S., Ferreira, F. M., Dolowschiak, T., Ruchti, F., Kirchner, F. R., Mertens, S., Prinz, I., Joller, N., Buch, T., Glatz, M., Sallusto, F. and LeibundGut-Landmann, S. (2019). The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host and Microbe, 25(3), P389-403.E6. https://doi.org/10.1016/j.chom.2019.02.002
35. Sparber, F., Ruchti, F. and LeibundGut-Landmann, S. (2020). Host immunity to Malassezia in health and disease. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00198
36. Teoh, Z., Mortensen, J. and Schaffzin, J. K. (2022). Invasive Malassezia pachydermatis infection in an 8-year-old child on lipid parenteral nutrition. Case Reports in Infectious Diseases, 1-4. https://doi.org/10.1155/2022/8636582
37. Tetsuka, N., Muramatsu, H., Iguchi, M., Oka, K., Morioka, H., Takahashi, Y. and Yagi, T. (2022). Difficulties in diagnosing Malassezia furfur bloodstream infection and possibility of spontaneous resolution in a patient undergoing chemotherapy for neuroblastoma: a case report. Journal of Infection and Chemotherapy, 28(7), 987-990. https://doi.org/10.1016/j.jiac.2022.02.026
38. Velegraki, A., Cafarchia, C., Gaitanis, G., Iatta, R. and Boekhout, T. (2015). Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathogens, 11(1), e1004523.https://doi.org/10.1371/journal.ppat.1004523
39. Wang, K., Cheng, L., Li, W., Jiang, H., Zhang, X., Liu, S., Huang, Y., Quiang, M., Dong, T., Li, Y., Wang, J., Feng, S. and Li, H. (2020). Susceptibilities of Malassezia strains from Pityriasis versicolor, Malassezia folliculitis and seborrheic dermatitis to antifungal drugs. Heliyon, 6(6), e04203. https://doi.org/10.1016/j.heliyon.2020.e04203
40. Wu, G., Zhao, H., Li, C., Rajapakse, M. P., Wong, W. C., Xu, J., Saunders, C. W., Reeder, N. L., Reilman, R. A., Scheynius, A., Sun, S., Billmyre, B. R., Li, W., Averette, A. F., Mieczkowski, P., Heitman, J.,Theelen, B., Schröder, M. S., Florez De Sessions, P… Dawson, T. L. (2015). Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genetics, 11(11), e1005614. https://doi.org/10.1371/journal.pgen.1005614
41. Zhang, X., Jin, F., Ni, F., Xu, Y., Lu, Y. y Xia, W. (2023). Clinical data analysis of 86 patients with invasive infections caused by Malassezia furfur from a tertiary medical center and 37 studies. Frontiers in Cellular and Infection Microbiology, 13. https://doi.org/10.3389/fcimb.2023.1079535