Autores/as
Resumen
En el mundo de hoy se establece la importancia de identificar biomarcadores de toxicidad como una forma preventiva ante la presencia de diversos compuestos químicos contaminantes que actúan como agentes xenobióticos en diversos organismos, además de permitir la evaluación de la inocuidad alimentaria en diversas matrices por medio del desarrollo de nuevas metodologías exploratorias como la metabolómica y la xenometabolómica. De esta forma, el objetivo de esta revisión estriba en el análisis de la información reportada con respecto a la determinación de biomarcadores de toxicidad estudiados en plantas y diferentes productos alimentarios, además del análisis de las diferentes aplicaciones actuales de las ciencias ómicas para la determinación de metabolitos respuesta. Finalmente, se busca comprender la aplicación de la metabolómica y la xenometabolómica frente a la identificación de biomarcadores de toxicidad en el medio ambiente y en los alimentos, ante la presencia de agentes contaminantes actuales como plaguicidas, metales pesados, plásticos y microplásticos, que permiten ver la importancia de estas ciencias en la identificación de biomarcadores mediante el desarrollo de las ómicas.
Citas
2. Afzaal, M., Saeed, F., Hussain, M., Shahid, F., Siddeeg, A., & Al-Farga, A. (2022). Proteomics as a promising biomarker in food authentication, quality and safety: A review. Food Science and Nutrition, 10(7), 2333–2346. https://doi.org/10.1002/fsn3.2842
3. Al-Salhi, R., Abdul-Sada, A., Lange, A., Tyler, C., & Hill, E. (2012). The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environmental Science & Technology, 46(16), 9080–9088. https://doi.org/10.1021/es3014453
4. Aliferis, K. (2020). Chapter 6 - Metabolomics in plant protection product research and development: discovering the mode(s)-of-action and mechanisms of toxicity. En D. Álvarez-Muñoz & M. B. T.-E. M. Farré (eds.). Environmental Metabolomics. (pp. 163–194). Elsevier. https://doi.org/10.1016/C2018-0-03345-9
5. Beger, R., Yu, L. R., Daniels, J., & Mattes, W. B. (2017). Exploratory biomarkers: Analytical approaches and their implications. Current Opinion in Toxicology, 4, 59–65. https://doi.org/10.1016/j.cotox.2017.06.008
6. Betancourt-Arango, J. P., Villaroel-Solis, E. E., Fiscal-Ladino, J. A., & Taborda-Ocampo, G. (2024). Volatilomics: An emerging discipline within Omics Sciences - A systematic review [version 1; peer review: awaiting peer review]. F1000Research, 13(991). https://doi.org/10.12688/f1000research.149773.1
7. Beyoğlu, D., Zhou, Y., Chen, C., & Idle, J. R. (2018). Mass isotopomer-guided decluttering of metabolomic data to visualize endogenous biomarkers of drug toxicity. Biochemical Pharmacology, 156, 491–500. https://doi.org/10.1016/j.bcp.2018.09.022
8. Blaauboer, B. J., Boekelheide, K., Clewell, H. J., Daneshian, M., Dingemans, M. M. L., Goldberg, A. M., Heneweer, M., Jaworska, J., Kramer, N. I., Leist, M., Seibert, H., Testai, E., Vandebriel, R. J., Yager, J. D., & Zurlo, J. (2012). The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. Altex, 29(4), 411–425. https://doi.org/10.14573/altex.2012.4.411
9. Brandelli, A., Lopes, N. A., & Boelter, J. F. (2017). 2 - Food applications of nanostructured antimicrobials. In A. M. B. T.-F. P. Grumezescu (Ed.), Nanotechnology in the Agri-Food Industry (pp. 35–74). Academic Press. https://doi.org/10.1016/B978-0-12-804303-5.00002-X
10. Brendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual- Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry, 69(5), 1727–1738. https://doi.org/10.1021/acs.jafc.0c07447
11. Budny, J. A. (2014). Commentary: The French revolution, toxicity biomarkers and digging holes. International Journal of Toxicology, 33(4), 268–270. https://doi.org/10.1177/1091581814537036
12. Burdisso, P., Zoni, J., Raisa, R. M., & Vila, A. J. (2017). Metabolómica: Aplicaciones clave en salud y producción de alimentos. Revista BCR, 22–28.
13. Cao, W., Wu, Z., Liang, C., Jing, P., Cui, S., Yang, G., & Lin, L. (2018). Determination of deltamethrin and its toxicity biomarkers in rabbit urine by high performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography (Se Pu), 36(6), 523 – 530. https://doi.org/10.3724/SP.J.1123.2018.03002
14. Capela E Silva, F., Sousa, A. C., Pastorinho, M. R., Mizukawa, H., & Ishizuka, M. (2022). Editorial: Animal Poisoning and Biomarkers of Toxicity. In Frontiers in veterinary science (Vol. 9, p. 891483). https://doi.org/10.3389/fvets.2022.891483
15. Capitão, A., Santos, J., Barreto, A., Amorim, M. J. B., & Maria, V. L. (2022). Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 12(9). https://doi.org/10.3390/nano12091478
16. Chen, W., Zhu, R., Ye, X., Sun, Y., Tang, Q., Liu, Y., Yan, F., Yu, T., Zheng, X., & Tu, P. (2022). Foodderived cyanidin-3-O-glucoside reverses microplastic toxicity via promoting discharge and modulating the gut microbiota in mice. Food Funct., 13(3), 1447–1458. https://doi.org/10.1039/D1FO02983E
17. Chetwynd, A. J., David, A., Hill, E. M., & Abdul-Sada, A. (2014). Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno) metabolome. Journal of Mass Spectrometry : JMS, 49(10), 1063–1069. https://doi.org/10.1002/jms.3426
18. Costa, C., Briguglio, G., Catanoso, R., Giambò, F., Polito, I., Teodoro, M., & Fenga, C. (2020). New perspectives on cytokine pathways modulation by pesticide exposure. Current Opinion in Toxicology, 19, 99–104. https://doi.org/10.1016/j.cotox.2020.01.002
19. Dang, Q., Zhao, X., Yang, T., Gong, T., He, X., Tan, W., & Xi, B. (2022). Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost. Science of The Total Environment, 824, 153837. https://doi.org/10.1016/j.scitotenv.2022.153837
20. David, A., Abdul-Sada, A., Lange, A., Tyler, C. R., & Hill, E. M. (2014). A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography. A, 1365, 72–85. https://doi.org/10.1016/j.chroma.2014.09.001
21. De Oliveira, J. S. P., Vieira, L. G., Carvalho, W. F., de Souza, M. B., de Lima Rodrigues, A. S., Simões, K., de Melo De Silva, D., dos Santos Mendonça, J., Hirano, L. Q. L., Santos, A. L. Q., & Malafaia, G. (2020). Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment, 737, 140304. https://doi.org/10.1016/j.scitotenv.2020.140304
22. Dear, J. W., & Antoine, D. J. (2014). Stratification of paracetamol overdose patients using new toxicity biomarkers: current candidates and future challenges. Expert Review of Clinical Pharmacology, 7(2), 181–189. https://doi.org/10.1586/17512433.2014.880650
23. Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y. K., & Shukla, S. (2022). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 0(0), 1–22. https://doi.org/10.1080/10408398.2022.2059650
24. Do Amaral, A., Costa-Gomes, J., Weimer, G., Marins, A., Loro, V., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114
25. Dong, H., Yan, G. L., Han, Y., Sun, H., Zhang, A. H., Li, X. N., & Wang, X. J. (2015). UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang. Chinese Journal of Natural Medicines, 13(9), 687–698. https://doi.org/10.1016/S1875-5364(15)30067-4
26. El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102. https://doi.org/10.1016/j.jfutfo.2022.03.002
27. Essers, A. J. A., Alink, G. M., Speijers, G. J. A., Alexander, J., Bouwmeister, P. J., van den Brandt, P. A., Ciere, S., Gry, J., Herrman, J., Kuiper, H. A., Mortby, E., Renwick, A. G., Shrimpton, D. H., Vainio, H., Vittozzi, L., & Koeman, J. H. (1998). Food plant toxicants and safety: Risk assessment and regulation of inherent toxicants in plant foods. Environmental Toxicology and Pharmacology, 5(3), 155–172.
https://doi.org/10.1016/S1382-6689(98)00003-9
28. Fan, A. M. (2014). Chapter 64 - Biomarkers in toxicology, risk assessment, and environmental chemical regulations. Biomarkers in Toxicology, pp. 1057–1080. Academic Press. https://doi.org/10.1016/B978-0-12-404630-6.00064-6
29. Gallego, J. L., & Olivero-Verbel, J. (2021). Cytogenetic toxicity from pesticide and trace element mixtures in soils used for conventional and organic crops of Allium cepa L. Environmental Pollution, 276, 116558. https://doi.org/10.1016/j.envpol.2021.116558
30. Garcia-Calvo, E., Machuca, A., Nerín, C., Rosales-Conrado, N., Anunciação, D. S., & Luque-Garcia, J. L. (2020). Integration of untargeted and targeted mass spectrometry-based metabolomics provides novel insights into the potential toxicity associated to surfynol. Food and Chemical Toxicology, 146, 111849. https://doi.org/10.1016/j.fct.2020.111849
31. Gibson, J. (2015). Air pollution, climate change, and health. The Lancet. Oncology, 16(6), e269. https://doi.org/10.1016/S1470-2045(15)70238-X
32. Hassan, I., Jabir, N. R., Ahmad, S., Shah, A., & Tabrez, S. (2015). Certain Phase i and II Enzymes as Toxicity Biomarker: An Overview. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2429-z
33. Iqbal, M., Abbas, M., Adil, M., Nazir, A., & Ahmad, I. (2020). Aflatoxins Biosynthesis, Toxicity and Intervention Strategies: A Review. SSRN Electronic Journal, 5(3), 168–191. https://doi.org/10.2139/ssrn.3407341
34. Jaskulak, M., & Grobelak, A. (2019). Chapter 6 - Cadmium Phytotoxicity—Biomarkers. En M. Hasanuzzaman, M. N. Vara Prasad, & K. Nahar (Eds.), Cadmium Tolerance in Plants. (pp. 177–191). Academic Press. https://doi.org/10.1016/B978-0-12-815794-7.00006-0
35. Jong, M.-C., Li, J., Noor, H. M., He, Y., & Gin, K. Y.H. (2022). Impacts of size-fractionation on toxicity of marine microplastics: Enhanced integrated biomarker assessment in the tropical mussels, Perna viridis. Science of The Total Environment, 835, 155459. https://doi.org/10.1016/j.scitotenv.2022.155459
36. Josić, D, Peršurić, Ž., Rešetar, D., Martinović, T., Saftić, L., & Kraljević Pavelić, S. (2017). Chapter Six - Use of Foodomics for Control of Food Processing and Assessing of Food Safety. Advances in Food and Nutrition Research, 81, 187–229). Academic Press. https://doi.org/10.1016/bs.afnr.2016.12.001
37. Josić, Djuro, Rešetar, D., Peršurić, Ž., Martinović, T., & Kraljevic Pavelić, S. (2017). Chapter 29 - Detection of Microbial Toxins by -Omics Methods: A Growing Role of Proteomics. En M. L. Colgrave (Ed.), Proteomics in Food Science. (pp. 485–506). Academic Press. https://doi.org/10.1016/B978-0-12-804007-2.00029-1
38. Khoo, L. W., Kow, A. S. F., Maulidiani, M., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). Hematological, biochemical, histopathological and1H-NMR Metabolomics application in acute toxicity evaluation of clinacanthus nutans water leaf extract. Molecules, 23(9). https://doi.org/10.3390/molecules23092172
39. Köhler, H. R., Hiittenrauch, K., Berkus, M., Gräff, S., & Alberti, G. (1996). Cellular hepatopancreatic reactions in Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Applied Soil Ecology, 3(1), 1–15. https://doi.org/10.1016/0929-1393(95)00073-9
40. Li, Q., Yan, X., Zhang, Y., Zhou, J., Yang, L., Wu, S., Peng, C., & Pan, X. (2022). Risk compounds, potential mechanisms and biomarkers of traditional Chinese medicine-induced reproductive toxicity. Journal of Applied Toxicology, 42(11), 1734–1756. https://doi.org/10.1002/jat.4290
41. Li, Z., Zheng, L., Shi, J., Zhang, G., Lu, L., Zhu, L., Zhang, J., & Liu, Z. (2015). Toxic markers of matrine determined using 1H-NMR-based metabolomics in cultured cells in vitro and rats in vivo. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/598412
42. Liem, J. F., Suryandari, D. A., Malik, S. G., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., & Pangaribuan, B. (2022). The Role of CYP2B6∗6 Gene Polymorphisms in 3,5,6-Trichloro- 2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers. Journal of Preventive Medicine and Public Health, 55(3), 280–288. https://doi.org/10.3961/jpmph.21.641
43. Louden, C., & Roberts, R. A. (2020). Validating In Vitro Toxicity Biomarkers Against Clinical Endpoints. In Biomarkers in Drug Discovery and Development (pp. 379–388). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119187547.ch19
44. Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301. https://doi.org/10.1016/j.ecoenv.2014.03.021
45. Lu, F., Cao, M., Wu, B., Li, X., Liu, H., Chen, D., & Liu, S. (2013). Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus. Journal of Ethnopharmacology, 149(1), 311–320. https://doi.org/10.1016/j.jep.2013.06.040
46. Lu, T. P., & Chen, J. J. (2015). Identification of drug-induced toxicity biomarkers for treatment determination. Pharmaceutical Statistics, 14(4), 284–293. https://doi.org/10.1002/pst.1684
47. Lytou, A. E., Panagou, E. Z., & Nychas, G. J. E. (2019). Volatilomics for food quality and authentication. Current Opinion in Food Science, 28, 88–95. https://doi.org/10.1016/j.cofs.2019.10.003
48. Malafaia, G., Nascimento, Í. F., Estrela, F. N., Guimarães, A. T. B., Ribeiro, F., Luz, T. M. da, & Rodrigues, A. S. de L. (2021). Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? Science of The Total Environment, 783, 146994. https://doi.org/10.1016/j.scitotenv.2021.146994
49. Marques, A., Lourenço, H. M., Nunes, M. L., Roseiro, C., Santos, C., Barranco, A., Rainieri, S., Langerholc, T., & Cencic, A. (2011). New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Research International, 44(2), 510–522. https://doi.org/10.1016/j.foodres.2010.12.003
50. Mason, C. L., Leedale, J., Tasoulis, S., Jarman, I., Antoine, D. J., & Webb, S. D. (2018). Systems Toxicology Approach to Identifying Paracetamol Overdose. CPT: Pharmacometrics \& Systems Pharmacology, 7(6), 394–403. https://doi.org/10.1002/psp4.12298
51. Medina, E. (2020). Aplicación de la metabolómica al control de la seguridad de los alimentos y la prevención de las enfermedades. [tesis de Maestría, Universitat Politècnica de València]. https://riunet.upv.es/bitstream/handle/10251/157877/Medina - Aplicación de la metabolómica en el control de la seguridad de los alimentos y en la pre....pdf?sequence=1&isAllowed=y
52. Mendrick, D. L. (2008). Genomic and genetic biomarkers of toxicity. Toxicology, 245(3), 175–181. https://doi.org/10.1016/j.tox.2007.11.013
53. Míguez, L., Esperanza, M., Seoane, M., & Cid, Á. (2021). Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. Ecotoxicology and Environmental Safety, 208, 111646. https://doi.org/10.1016/j.ecoenv.2020.111646
54. Mohamad-Shalan, N. A. A., Mustapha, N. M., & Mohamed, S. (2017). Chronic toxicity evaluation of Morinda citrifolia fruit and leaf in mice. Regulatory Toxicology and Pharmacology, 83, 46–53. https://doi.org/10.1016/j.yrtph.2016.11.022
55. Nusair, S. D., Ananbeh, M., Zayed, A., Ahmad, M. I., & Qinna, N. A. (2022). Postmortem sampling time effect on toxicity biomarkers in rats exposed to an acute lethal methomyl dose. Toxicology Reports, 9, 1674–1680. https://doi.org/10.1016/j.toxrep.2022.08.010
56. Patange, A., Boehm, D., Giltrap, M., Lu, P., Cullen, P. J., & Bourke, P. (2018). Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment, 631–632, 298–307. https://doi.org/10.1016/j.scitotenv.2018.02.269
57. Pathak, S., Catanzaro, R., Vasan, D., Marotta, F., Chabria, Y., Jothimani, G., Verma, R. S., Ramachandran, M., Khuda-Bukhsh, A. R., & Banerjee, A. (2020). Benefits of aged garlic extract in modulating toxicity biomarkers against p-dimethylaminoazobenzene and phenobarbital induced liver damage in Rattus norvegicus. Drug and Chemical Toxicology, 43(5), 454–467. https://doi.org/10.1080/01480545.2018.1499773
58. Perianes-Rodriguez, A., Waltman, L., & van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006
59. Pirzadah, T. B., Malik, B., Tahir, I., Hakeem, K. R., Alharby, H. F., & Rehman, R. U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. International Biodeterioration & Biodegradation, 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992
60. Puente, C., & Ramaroson, R. (2006). Medicion y analisis de los compuestos organicos volatiles en la atmosfera: Ultimas tecnicas, aplicabilidad y resultados a nivel europeo. Revista ION, 19(1), 43–47. https://revistas.uis.edu.co/index.php/revistaion/article/view/539
61. Putta, S., Yarla, N. S., Lakkappa, D. B., Imandi, S. B., Malla, R. R., Chaitanya, A. K., Chari, B. P. V, Saka, S., Vechalapu, R. R., Kamal, M. A., Tarasov, V. V, Chubarev, V. N., Siva Kumar, K., & Aliev, G. (2018). Chapter 2 - Probiotics: Supplements, Food, Pharmaceutical Industry. En A. M. Grumezescu & A. M. Holban (Eds.). Therapeutic, Probiotic, and Unconventional Foods. (pp. 15–25). Academic Press. https://doi.org/10.1016/B978-0-12-814625-5.00002-9
62. Ríos-Sánchez, E., Gónzalez-Zamora, A., Olivas-Calderón, E. H., Anguiano-Vega, G. A., & Pérez-Morales, R. (2019). Hidrocarburos Aromáticos Policíclicos: Una revisión actualizada de un problema antiguo. Quimica Farmacéutica y Clinica. 2(9), 36–47.
63. Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81–100. https://doi.org/10.1016/j.fct.2018.11.047
64. Sahu, S. C. (2022). Genomic and Epigenomic Biomarkers for Predictive Toxicity and Disease. In Genomic and Epigenomic Biomarkers of Toxicology and Disease (pp. 1–5). John Wiley & Sons, Ltd.https://doi.org/10.1002/9781119807704.ch1
65. Shipelin, V. A., Smirnova, T. A., Gmoshinskii, I. V., & Tutelyan, V. A. (2015). Analysis of Toxicity Biomarkers of Fullerene C60 Nanoparticles by Confocal Fluorescent Microscopy. Bulletin of Experimental Biology and Medicine, 158(4), 443–449. https://doi.org/10.1007/s10517-015-2781-4
66. Singh, V., Pandey, B., & Suthar, S. (2019). Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicology and Environmental Safety, 179, 88–95. https://doi.org/10.1016/j.ecoenv.2019.04.018
67. Southam, A. D., Lange, A., Al-Salhi, R., Hill, E. M., Tyler, C. R., & Viant, M. R. (2014). Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by directinfusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 10(6), 1050–1058. https://doi.org/10.1007/s11306-014-0693-3
68. Süloğlu, A. K., Koçkaya, E. A., & Selmanoğlu, G. (2022). Toxicity of benzyl benzoate as a food additive and pharmaceutical agent. Toxicology and Industrial Health, 38(4), 221–233. https://doi.org/10.1177/07482337221086133
69. Ullah, S., Ahmad, S., Altaf, Y., Dawar, F. U., Anjum, S. I., Baig, M. M. F. A., Fahad, S., Al-Misned, F., Atique, U., Guo, X., Nabi, G., & Wanghe, K. (2022). Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: A multi-biomarkers based study. Journal of King Saud University - Science, 34(2), 101752. https://doi.org/10.1016/j.jksus.2021.101752
70. Vasileiadis, S., Brunetti, G., Marzouk, E., Wakelin, S., Kowalchuk, G. A., Lombi, E., & Donner, E. (2018). Silver Toxicity Thresholds for Multiple Soil Microbial Biomarkers. Environmental Science & Technology, 52(15), 8745–8755. https://doi.org/10.1021/acs.est.8b00677
71. Yan, H., Qiao, Z., Shen, B., Xiang, P., & Shen, M. (2016). Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Science International, 267, 129–135. https://doi.org/10.1016/j.forsciint.2016.08.027
72. Yang, S., Ulhassan, Z., Shah, A. M., Khan, A. R., Azhar, W., Hamid, Y., Hussain, S., Sheteiwy, M. S., Salam, A., & Zhou, W. (2021). Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 166, 1001–1013. https://doi.org/10.1016/j.plaphy.2021.07.013
73. Yebenes, G. de M. J., Loza, E., & Carmona, L. (2015). Predicting Toxicity: Biomarkers and the Value of the Patient’s Opinion. In Current Pharmaceutical Design (Vol. 21, Issue 2, pp. 233–240). http://dx.doi.org/10.2174/1381612820666140825124352
74. Yesildag, K., Eroz, R., Genc, A., Dogan, T., & Satici, E. (2022). Evaluation of the protective effects of morin against acrylamide-induced lung toxicity by biomarkers of oxidative stress, inflammation, apoptosis, and autophagy. Journal of Food Biochemistry, 46(7), e14111. https://doi.org/10.1111/jfbc.14111
75. Yu, D., Yong, D., & Dong, S. (2013). Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method. Journal of Environmental Sciences, 25(4), 785–790. https://doi.org/10.1016/S1001-0742(12)60119-3
76. Zuluaga, M., Robledo, S., Osorio-Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolomics and pesticides: systematic literature review using graph theory for analysis of references. Nova, 14(25), 121–138. https://doi.org/10.22490/24629448.173