Cómo citar
Osorio, J. H., Ribes, A., & Lluc, M. (2009). Diagnóstico “in vitro” de la deficiencia de acil-CoA deshidrogenasa de cadena corta. Biosalud, 8, 96–101. Recuperado a partir de https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/5529

Autores/as

José Henry Osorio
Universidad de Caldas. Manizales
jose.osorio_o@ucaldas.edu.co
Antonia Ribes
Instituto de Bioquímica Clínica. Corporación Sanitaria Clínic. Barcelona
jose.osorio_o@ucaldas.edu.co
Montse Lluc
Instituto de Bioquímica Clínica. Corporación Sanitaria Clínic. Barcelona
jose.osorio_o@ucaldas.edu.co

Resumen

La acil-CoA deshidrogenasa de cadena corta (SCAD) cataliza la primera reacción de la degradación de ácidos grasos de 4 a 6 átomos de carbono. Su deficiencia debe ser siempre confirmada por estudios de laboratorio. En el presente trabajo, fueron incubados fibroblastos de pacientes que presentaban la deficiencia de SCAD, en presencia de sustratos tritiados. Fue encontrada diferencia significativa (p<0,05) al comparar la degradación de palmitato y miristato tritiado entre controles y pacientes con deficiencia de SCAD.

Amendt BA, Greene C, Sweetman L, Cloherty J, Shih V, Moon A, et al. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest 1987;79:1303-1309.

Corydon MJ, Vockley J, Rinaldo P, Rhead WJ, Kjeldsen M, Winter V, et al. Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 2001;49;1:18-23.

Rhead WL, Wolff JA, Lipson M, Falace P, Desai N, Fritchman K, et al. Clinical and biochemical variation and family studies in the multiple acyl-CoA dehydrogenation disorders. Pediatr Res 1987;21:371-376.

Rinaldo P, Welch RD, Previs SF, Schmidt-Sommerfeld E, Gargus JJ, O’Shea JJ, et al. Ethylmalonic/adipic aciduria: effect of oral medium chain triglycerides, carnitine and glycine on urinary excretion of organic acids, acylcarnitines and acylglycines. Pediatr Res 1991;30:216-221.

Gregersen N, Rhead W, Christensen E. (1990) Riboflavin responsive Glutaric Aciduria type II. In: Tanaka K, Coates PM, eds. Clinical, Biochemical and Molecular Aspects of Fatty Acid Oxidation. Alan R Liss Inc.New York: pp. 477-494.

Hegre CS, Halenz DR, Lane MD. The enzymatic carboxylation of butyryl-coenzyme A. J Am Chem Soc 1959;81:6526-6527.

Gregersen N, Winter VS, Corydon MJ, Corydon TJ, Rinaldo P, Ribes A, et al. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-->T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-->A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 1998;7(4):619-27.

Christensen E, Brandt NJ, Schmalbruch H, Kamieniecka Z, Hertz B, Ruitenbeek W. Muscle cytochrome C oxidase deficiency accompanied by a urinary organic acid pattern mimicking multiple acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 1993;16:553-556.

García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 1997;17(2):165-70.

Tanaka K, Kean EA, Johnson B. Jamaican vomiting sickness: Biochemical investigation of two cases. New Engl J Med 1976;295:461-467.

Osorio JH. Patología molecular de los errores hereditarios de la β-oxidación mitocondrial de los ácidos grasos: alcances en el diagnóstico y tratamiento. Biosalud 2006;5:71-83.

Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-275.

Manning NJ, Olpin SE, Pollit RJ, Webley JA. Comparison of 9.10-3HPalmitic and 9.10-3Hmyristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inher Metab Dis 1990;13:58-68.

Olpin SE, Manning NJ, Carpenter K, Middleton B, Pollit RJ. Differential diagnosis of hydroxydicarboxylic aciduria based on release of 3H2O from [9,10-3H]-myristic and [9,10-3H]-palmitic acids by intact cultured fibroblasts. J Inher Metab Dis 1992;15:883-890.

Kolvraa S, Gregersen N, Christiensen E, Hobolth N. In vitro fibroblasts studies in a patient with C6-C10 dicarboxilic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta 1982;126: 53-67.

Saudubray JM, Coude FX, Demaugre F, Johnson C, Gibson KM, Nyhan WL. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation. Pediatr Res 1982;16:877-881.

Rhead WJ, Moon A, Oettger V, Henkle K. 14CO2-Labelled sustrate catabolism by human diploid fibroblasts derived from infants and adults. Biochem Med 1985;34:182-188.

Veerkamp JH, Van Moerkerk HTB, Glatz JFC, Zuurveld JGEM, Jacobs AEM, et al. 14CO2 production is no measure of [14C]fatty acid oxidation. Biochem. Med Metab Biol 1986;16:248-259.

Zytkovicz TH, Fitzgerald EF, Marsden D, Larson CA, Shih VE, Johnson DM, et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a twoyear summary from the New England newborn screening program. Clin Chem 2001;47:194-195.

Levy HL. Newborn screening by tandem mass spectrometry: a new era. Clin Chem 1998;44:24012.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |