Cómo citar
Osorio, J. H., & Flórez, J. D. (2011). Diferencias bioquímicas y fisiológicas en el metabolismo de lipoproteínas de aves comerciales. Biosalud, 10(1), 88–98. Recuperado a partir de https://revistasojs.ucaldas.edu.co/index.php/biosalud/article/view/4754

Autores/as

José Henry Osorio
Universidad de Caldas. Manizales
jose.osorio_o@ucaldas.edu.co
Jancy Darly Flórez
Universidad de Caldas. Manizales
jose.osorio_o@ucaldas.edu.co

Resumen

El trabajo tuvo como objetivos, analizar el metabolismo básico de los lípidos en aves comerciales e identificar las principales diferencias entre líneas genéticas y propósitos productivos, se analizó la literatura disponible de los últimos 50 años en las bases de datos BBCS-LILACS, Fuente Académica, IB-PsycINFO, IB-SSCI, IB-SciELO, Scopus y Scirus, así como artículos históricos, textos y referencias citadas en trabajos públicos. Se obtuvo información pertinente relacionada con los objetivos propuestos en la presente revisión, por lo cual puede clasificarse en cinco secciones a saber: digestión y absorción lipídica en las aves, transporte de lípidos exógenos, transporte endógeno de los lípidos, diferencias del metabolismo lipídico en pollo de engorde y diferencias de metabolismo de lípidos en gallinas ponedoras. En las aves los portomicrones son transportados por vía vena porta, y no linfática como los quilomicrones en los mamíferos. El metabolismo de las lipoproteínas, los niveles de lípidos en plasma y la acumulación de lípidos difiere entre machos y hembras y entre estirpes o líneas genéticas.

Murray RK, Mayes PA, Granner DK, Rodwell VW. Harper - Bioquímica Ilustrada. 16 ed. México D.F.: Manual Moderno; 2004.

Montgomery R, Conway T. Bioquímica casos y texto. 6 ed. Madrid: Harcourt Brace; 1998.

Newsholme EA, Leech AR. Bioquímica Médica. Madrid: Interamericana McGraw-Hill; 1987.

Krogdahl Á. Digestion and absorption of lipids in poultry. J Nutri 1985; 115(5):675-85.

Bosc-Bierne I, Rathelot J, Perrot C, Sarda L. Studies on chicken pancreatic lipase and colipase. Biochim Biophys Acta 1984; 794(1):65-71.

Place AR. Birds and lipids: living off the fat of the earth. Poult Avian Biol Rev 1996; 7:127-41.

Sklan D, Hurwitz S, Budowski P, Ascareli I. Fat digestion and absorption in chicks fed raw or heated soybean meal. J Nutri 1975; 105(1):57-63.

Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973; 84(3):488-95.

Baurhoo B, Ferket PR, Zhao X. Effects of diets containing different concentrations of monoligosacharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poult Sci 2009; 88(11):2262-72.

Sun X, McElroy A, Webb KE, Sefton AE, Novak C. Broiler performance and intestinal alterations when fed drug-free diets. Poult Sci 2005; 84(8):1294-302.

FAO. Código de prácticas sobre buena alimentación animal, CAC/RCP 54. FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación); 2004. Disponible en: http://www.codexalimentarius.net/web/standard_list.do?lang=es Consultado Junio 16 de 2011.

Viveros A, Chamorro S, Pizarro M, Arija I, Centeno C, Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci 2011; 90(3):566-78.

Bickerstaffe R, Annison EF. Triglyceride synthesis by the small intestinal epithelium of the pig, sheep and chicken. Biochem J 1969; 111(4):419-29.

Lehninger AL, Nelson D, Cox M. Principles of biochemistry. 3 ed. Barcelona, España: Omega; 2001.

Katongole JBD, March BE. Fatty acid binding protein in the intestine of the chicken. Poult Sci 1979; 58:372-5.

Noyan A, Lossow WJ, Brot N, Chaikoff IL. Pathway and form of absorption of palmitic acid in the chicken. J Lipid Res 1964; 5(4):538-41.

Hurwitz S, Bar A, Katz M, Sklan D, Budowski P. Absorption and secretion of fatty acids and bile acids in the Intestine of the laying fowl. J Nutri 1973; 103(4):543-7.

Hurwitz S, Eisner U, Dubrov D, Sklan D, Risenfeld G, Bar A. Protein, fatty acids, calcium, and phosphate absorption along the gastro-intestinal tract of the young turkey. Comp Biochem Physiol 1979; 62A(4):847-50.

Garret RL, Young RJ. Effect of micelle formation on the absorption of natural fat and fatty acids by the chicken. J Nutri 1975; 105:827-38.

Romanoff AL. The extraembryonic membranes. The Avian Embryo. New York: The Macmillan Co.; 1969. p. 1041-140.

Serafin JA, Nesheim MC. Influence of dietary heat-labile factors in soybean meal upon bile acid pools and turnover in the chick. J Nutri 1970; 100(7):786-96.

Katongole JBD, March BE. Fat utilization in relation to intestinal fatty-acid binding protein and bile salts in chicks of different ages and different genetic sources. Poult Sci 1980; 59:819-27.

Connor WE, Johnston R, Lin DS. Metabolism of cholesterol in the tissues and blood of the chick embryo. J Lipid Res 1969; 10(4):388-94.

Griffin H, Hermier D. Plasma lipoprotein metabolism and fattening in poultry. In: Leclercq B, Whitehead CC, eds. Leanness in Domestic Birds. Londres: Butterworths; 1988. p. 175-201.

Baynes JW, Dominiczak MH. Medical biochemistry. 2 ed. Filadelfia: Elsevier Mosby; 2005.

Fraser R, Heslop VR, Murray FEM, Day WA. Ultrastructural studies of the portal transport of fat in chickens. Br J Exp Pathol 1986; 67(6):783-91.

Griffin HD, Grant G, Perry M. Hydrolysis of plasma triacylglycerol rich lipoproteins from immature and laying hens (Gallus domesticus) by lipoprotein lipase in vitro. Biochem J 1982; 206:647-54.

Hermier D. Lipoprotein metabolism and fattening in poultry. J Nutri 1997; 127(5):805S-8S.

César TB, Oliveira MRM, Mesquita CH, Maranhão RC. High cholesterol intake modifies chylomicron metabolism in normolipidemic young men. J Nutri 2006; 136(4):971-6.

Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res 1997; 38:2173-92.

Nimpf J, Schneider WJ. Receptor mediated lipoprotein transport in laying hens. J Nutri 1991; 121(9):1471-4.

Griffin H, Acamovic F, Guo K, Peddie J. Plasma lipoprotein metabolism in lean and in fat chickens produced by divergent selection for plasma very low density lipoprotein concentration. J Lipid Res 1989; 30(8):1243-50.

Hermier D, Chapman J, Leclercq B. Plasma lipoprotein in fasted and refed chickens of two strains selected for high or low adiposity. J Nutri 1984; 114(6):1112-21.

Ide T, Okamatsu H, Sugano M. Regulation by dietary fats of 3-hydroxy-3-methylglutary coenzyme A reductase in rat liver. J Nutri 1978; 108:601-12.

Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 2002; 110(7):905-11.

Banerjee D, Redman CM. Biosynthesis of high density lipoprotein by chicken liver: nature of nascent intracellular high density lipoprotein. J Cell Biol 1983; 96:651-60.

Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res 1980; 21:789-853.

Musa HH, Chen GH, Cheng JH, Yousif GM. Relation between abdominal fat and serum Cholesterol, Triglycerides, and lipoprotein concentration in chicken Breeds. Turk J Vet Anim Sci 2007; 31(6):375-9.

De Beer FC, Connell PM, Yu J, De Beer MC, Webb NR, Van der Westhuyzen DR. HDL modification by secretory phospholipase A2 promotes scavenger receptor class B type I interaction and accelerates HDL catabolism. J Lipid Res 2000; 41:1849-57.

Ding ST, Lilburn MS. The Developmental Expression of Acyl-Coenzyme A:CholesterolAcyltransferase in the Yolk Sac Membrane, Liver, and Intestine of Developing Embryos and Posthatch Turkeys. Poult Sci 2000; 79(10):1460-4.

Toth PP. The “Good Cholesterol” High-Density Lipoprotein. Circ 2005; 111:e89-e91.

Xu ZR, Wang MQ, Mao HX, Zhan XA, Hu CH. Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult Sci 2003; 82(3):408-13.

Havenstein GB, Ferket PR, Qureshi MA. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 2003; 82(10):1509-18.

An BK, Nishiyama H, Tanaka K, Ohtani S, Iwata T, Tsutsumi k, et al. Dietary safflower phospholipid reduces liver lipids in laying hens. Poult Sci 1997; 76(5):689-95.

Crespo AN, Esteve-García E. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult Sci 2001; 80:71-8.

Crespo AN, Esteve-García E. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult Sci 2002; 81:512-8.

Sinsigalli N, McMurtry JP, Cherry JA, Siegel PB. Glucose tolerance, plasma insulin and immunoreactive glucagon in chickens selected for high and low body weight. J Nutri 1987; 117(5):941-7.

Hermier D, Quignard-Boulangé A, Dugail I, Guy G, Salichon MR, Brigant L, et al. Evidence of enhanced storage capacity in adipose tissue of genetically fat chickens. J Nutri 1989; 119(10):1369-75.

Sato K, Akiba Y, Chida Y, Takahashi K. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poult Sci 1999; 78(9):1286-91.

Musa HH, Chen GH, Wang KH, Li BC, Mekki DM, Shu JT, et al. Relation between serum cholesterol level, lipoprotein concentration and carcass characteristics in genetically lean and fat chicken breeds. J Biol Sci 2006; 6(3):616-20.

Hermier D, Catheline D, Legrand P. Relationship between hepatic fatty acid desaturation and lipid secretion in the estrogenized chicken. Comp Biochem Physioly 1996; 115A(3):259-64.

Walzem RL, Davis PA, Hansen RJ. Overfeeding increase very low density lipoprotein diameter and causes the appearance of a unique lipoprotein particle in association with failed yolk deposition. J Lipid Res 1994; 35(8):1354-66.

Bacon WL, Musser MA, Brown KI. Plasma free fatty acid and neutral lipid concentrations in immature, laying and broody turkey hens. Poult Sci 1974; 53:1154-60.

Hermier D, Forgez P, Williams J, Chapman MJ. Alterations in plasma lipoproteins and apolipoproteins associated with estrogen-induced hyperlipidemia in the laying hen. Eur J Biochem 1989; 184(1):109-18.

Walzem RL, Hansen RJ, Williams DL, Hamilton RL. Estrogen induction of VLDLy Assembly in EggLaying hens. J Nutri 1999; 129(2):467S-72S.

Dashti N, Kelley JL, Thayer RH, Ontko JA. Concurrent inductions of avian hepatic lipogenesis, plasma lipids, and plasma apolipoprotein B by estrogen. J Lipid Res 1983; 24(4):368-80.

Kudzma DJ, Claire F, DeLallo L, Friedberg SJ. Mechanism of avian estrogen-induced hypertriglyceridemia: evidence for overproduction of triglyceride. J Lipid Res 1975; 16(2):123-33.

Kirchgessner TG, Heinzmann C, Svenson KL, Gordon DA, Nicosia M, Lebherz HG, et al. Regulation of chicken apolipoprotein B: cloning, tissue distribution, and estrogen induction of mRNA. Gene 1987; 59(2-3):241-51.

Laziera CB, Wiktorowicza M, DiMattiaa GE, Gordonb DA, Binderb R, Williamsb DL. Apolipoprotein (apo) B and apoII gene expression are both estrogen-responsive in chick embryo liver but only apoII is estrogen-responsive in kidney. Mol Cell Endocrinol 1994; 106(1):187-94.

Bacon WL, Leclercq B, Blum JC. Difference in metabolism of very low density lipoprotein from laying chicken hens in comparison to immature chicken hens. Poult Sci 1978; 57:1675-86.

Rahim A. Type of fatty acids, lipoprotein secretion from liver and fatty liver syndrome in laying hens. Int J Poult Sci 2005; 4(11):917-9.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |