DOI: 10.17151/biosa.2015.14.2.4
Cómo citar
Orrego Cardozo, M. ., Ponte, I. ., & Suau, P. . (2015). Caracterización de la estructura secundaria de subtipos de la histona H1 por dicroísmo circular. Biosalud, 14(2), 29–48. https://doi.org/10.17151/biosa.2015.14.2.4

Autores/as

Mary Orrego Cardozo
Universidad Nacional de Colombia
morregoc@unal.edu.co
Inma Ponte
Universidad Autónoma de Barcelona
inma.ponte@uab.es
Pedro Suau
Universidad Autónoma de Barcelona
pere.suau@uab.es

Resumen

Introducción: Las histonas H1 modulan la estructura y la función de la cromatina. Las células somáticas de mamífero contienen los subtipos H1°, H1a, H1b, H1c, H1d y H1e; en células germinales de testículo y en ovocito, se encuentran respectivamente H1t y H1oo. Su estructura está conformada por un dominio central globular flanqueado por los dominios N-Terminal (DNT) y C-Terminal (DCT). Objetivo: Caracterizar la estructura secundaria de subtipos de la histona H1 mediante dicroísmo circular (DC). Materiales y Métodos: La histona H1 total se extrajo de núcleos de cerebro de rata por cromatografía de intercambio catiónico; la H1° se purificó por filtración en gel y las H1a, H1b, H1c y H1e por cromatografía líquida de alta resolución de fase reversa (RF-HPLC). Los espectros de DC se realizaron en tampón fosfato 10 mM; tampón fosfato 10 mM, 20% TFE (trifluoroetanol); tampón fosfato 10 mM, 40% TFE; tampón fosfato 10 mM, 60% TFE; tampón fosfato 10 mM, 150 mM NaCl y tampón fosfato 10 mM, 1 M NaCl. El análisis de los espectros se realizó con el programa Standard Analysis. Resultados: El porcentaje de hélice-alfa se calculó por diferentes métodos matemáticos teniendo en cuenta elipticidad molar a 193 nm y a 222 nm; con programa de deconvolución K2D y con relaciones cualitativas R1 y R2. El TFE induce la estructura en hélice-alfa en cada uno de los subtipos, mientras que NaCl no induce ningún cambio importante. Conclusión: Los subtipos con mayor contenido de hélice-alfa son H1a y H1c. Las diferencias observadas en el porcentaje de hélice-alfa entre los diferentes subtipos puede ser importante para su diferenciación funcional.

1. Van Holde K, Zlatanova J. Chromatin higher order structure: chasing a mirage? Journal of Biological Chemistry 1995; 270(15):8373-6.

2. Wolffe A. Chromatin: structure and function. Academic Press; 1998.

3. Thoma F, Koller T, Klug A. Involvement of histone H1 in the organization of the nucleosome and ofthe salt-dependent superstructures of chromatin. The Journal of Cell Biology 1979; 83(2 Pt 1):403-27.

4. Clark DJ, Thomas JO. Salt-dependent co-operative interaction of histone H1 with linear DNA. Journal of Molecular Biology 1986; 187(4):569-80.

5. Thomas JO, Rees C, Finch JT. Cooperative binding of the globular domains of histones H1 and H5 to DNA. Nucleic Acids Research 1992; 20(2):187-94.

6. Cole RD. A minireview of microheterogeneity in H1 histone and its possible significance. Analytical Biochemistry 1984; 136(1):24-30.

7. Coles LS, Robins AJ, Madley LK, Wells JR. Characterization of the chicken histone H1 gene complement. Generation of a complete set of vertebrate H1 protein sequences. The Journal of Biological Chemistry 1987; 262(20):9656-63.

8. Smith RC, Dworkin-Rastl E, Dworkin MB. Expression of a histone H1-like protein is restricted to early Xenopus development. Genes & Development 1988; 2(10):1284-95.

9. Sarg B, López R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Journal of Proteomics 2015;
113:162-77.

10. Ponte I, Vidal-Taboada JM, Suau P. Evolution of the vertebrate H1 histone class: evidence for the functional differentiation of the subtypes. Molecular Biology and Evolution 1998; 15(6):702-8.

11. Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biology 2007; 5:22.

12. Wolffe AP, Khochbin S, Dimitrov S. What do linker histones do in chromatin? Bioessays 1997; 19(3):249-55.

13. Allan J, Mitchell T, Harborne N, Bohm L, Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. Journal of Molecular Biology 1986; 187(4):591-601.

14. Clark DJ, Kimura T. Electrostatic mechanism of chromatin folding. Journal of Molecular Biology 1990; 211(4):883-96.

15. Roque A, Iloro I, Ponte I, Arrondo JL, Suau P. DNA-induced secondary structure of the carboxylterminal domain of histone H1. The Journal of Biological Chemistry 2005; 280(37):32141-7.

16. Wolffe AP. Histone H1. The International Journal of Biochemistry & Cell Biology 1997; 29(12):1463-6.

17. Drabent B, Franke K, Bode C, Kosciessa U, Bouterfa H, Hameister H, et al. Isolation of two murine H1 histone genes and chromosomal mapping of the H1 gene complement. Mammalian Genome 1995; 6(8):505-11.

18. Albig W, Meergans T, Doenecke D. Characterization of the H1.5 gene completes the set of human H1 subtype genes. Gene 1997; 184(2):141-8.

19. Clark DJ, Hill CS, Martin SR, Thomas JO. Alpha-helix in the carboxy-terminal domains of histones H1 and H5. The EMBO Journal 1988; 7(1):69-75.

20. Luo P, Baldwin RL. Mechanism of helix induction by trifluoroethanol: a framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water. Biochemistry 1997; 36(27):8413-21.

21. Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 1993; 362(6417):219-23.

22. Suzuki M, Gerstein M, Johnson T. An NMR study on the DNA-binding SPKK motif and a model for its interaction with DNA. Protein Engineering 1993; 6(6):565-74.

23. Vila R, Ponte I, Jiménez MA, Rico M, Suau P. A helix-turn motif in the C-terminal domain of histone H1. Protein Science: a publication of the Protein Society 2000; 9(4):627-36.

24. Roque A, Ponte I, Suau P. Macromolecular crowding induces a molten globule state in the C-terminal domain of histone H1. Biophysical Journal 2007; 93(6):2170-7.

25. Roque A, Ponte I, Arrondo JL, Suau P. Phosphorylation of the carboxy-terminal domain of histone H1: effects on secondary structure and DNA condensation. Nucleic Acids Research 2008; 36(14):4719- 26.

26. Roque A, Ponte I, Suau P. Role of charge neutralization in the folding of the carboxy-terminal domain of histone H1. The Journal of Physical Chemistry B 2009; 113(35):12061-6.

27. Roque A, Teruel N, López R, Ponte I, Suau P. Contribution of hydrophobic interactions to the folding and fibrillation of histone H1 and its carboxy-terminal domain. Journal of Structural Biology 2012; 180(1):101-9.

28. Nicolini CA (Ed.). Chromatin structure and function. New York: Plenum Press; 1979.

29. Chen YH, Yang JT, Chau KH. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 1974; 13(16):3350-9.

30. Viguera AR, Serrano L. Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. Biochemistry 1995; 34(27):8771-9.

31. Bruch MD, Dhingra MM, Gierasch LM. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an alpha-helical region of carboxypeptidase A. Proteins 1991; 10(2):130-9.

32. Andrade MA, Chacón P, Merelo JJ, Morán F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Engineering 1993; 6(4):383-90.

33. Khadake JR, Rao MR. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Biochemistry 1997; 36(5):1041-51.

34. Thompson RJ. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. Journal of Neurochemistry 1973; 21(1):19-40.

35. Pina B, Martínez P, Simón L, Suau P. Differential kinetics of histone H1(0) accumulation in neuronal and glial cells from rat cerebral cortex during postnatal development. Biochemical and Biophysical Research Communications 1984; 123(2):697-702.

36. García-Ramírez M, Leuba SH, Ausio J. One-step fractionation method for isolating H1 histones from chromatin under nondenaturing conditions. Protein Expression and Purification 1990; 1(1):40-4.

37. Segura JMG, et al. Técnicas instrumentales de análisis en Bioquímica. Síntesis; 2002.

38. Lennox RW, Cohen LH. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods in Enzymology 1989; 170:532-49.

39. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. New York: Cold Spring Harbor Laboratory Press; 1989.

40. Pina B, Martínez P, Suau P. Changes in H1 complement in differentiating rat-brain cortical neurons. European Journal of Biochemistry / FEBS 1987; 164(1):71-6.

41. Bohm EL, Strickland WN, Strickland M, Thwaits BH, van der Westhuizen DR, von Holt C. Purification of the five main calf thymus histone fractions by gel exclusion chromatography. FEBS Letters 1973; 34(2):217-21.

42. Brown DT, Alexander BT, Sittman DB. Differential effect of H1 variant overexpression on cell cycle progression and gene expression. Nucleic Acids Research 1996; 24(3):486-93.

43. Lennox RW, Oshima RG, Cohen LH. The H1 histones and their interphase phosphorylated states in differentiated and undifferentiated cell lines derived from murine teratocarcinomas. The Journal of Biological Chemistry 1982; 257(9):5183-9.

44. Scopes RK. Protein purification: principles and practice. Springer; 1994.

45. Wellman SE, Sittman DB, Chaires JB. Preferential binding of H1e histone to GC-rich DNA. Biochemistry 1994; 33(1):384-8.

46. Phillips D, Clarke M. Behaviour of histones in exclusion chromatography and gel electrophoresis in relation to their molecular weights. Journal of Chromatography A 1970; 46:320-3.

47. Gorovsky MA, Pleger GL, Keevert JB, Johmann CA. Studies on histone fraction F2A1 in macro- and micronuclei of Tetrahymena pyriformis. The Journal of Cell Biology 1973; 57(3):773-81.

48. Lindner H, Helliger W, Puschendorf B. Separation of rat tissue histone H1 subtypes by reverse-phase h.p.l.c. Identification and assignment to a standard H1 nomenclature. The Biochemical Journal 1990; 269(2):359-63.

49. Lindner H, Sarg B, Helliger W. Application of hydrophilic-interaction liquid chromatography to the separation of phosphorylated H1 histones. Journal of Chromatography A 1997; 782(1):55-62.

50. Talasz H, Helliger W, Puschendorf B, Lindner H. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996; 35(6):1761-7.

51. Khadake JR, Rao MR. DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry 1995; 34(48):15792-801.

52. Pintar A, Chollet A, Bradshaw C, Chaffotte A, Cadieux C, Rooman MJ, et al. Conformational properties of four peptides corresponding to alpha-helical regions of Rhodospirillum cytochrome c2 and bovine calcium binding protein. Biochemistry 1994; 33(37):11158-73.

53. Prieto J, Serrano L. C-capping and helix stability: the Pro C-capping motif. Journal of Molecular Biology 1997; 274(2):276-88.

54. Morán F, Montero F, Azorín F, Suau P. Condensation of DNA by the C-terminal domain of histone H1. A circular dichroism study. Biophysical Chemistry 1985; 22(1-2):125-9.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |