DOI: 10.17151/biosa.2016.15.2.10
Cómo citar
Rodríguez R. Y. A., Rojas G. A. F., & Rodríguez B. S. (2016). Encapsulación de probióticos para aplicaciones alimenticias. Biosalud, 15(2), 106 - 115. https://doi.org/10.17151/biosa.2016.15.2.10

Autores/as

Yeimy Alejandra Rodríguez R.
Universidad Nacional de Colombia
yearodriguezre@unal.edu.co
Andrés Felipe Rojas G.
Universidad Nacional de Colombia
anfrojasgo@unal.edu.co
Sneyder Rodríguez B.
Universidad Nacional de Colombia
snrodriguezba@unal.edu.co

Resumen

Los alimentos funcionales contienen componentes activos que con un consumo habitual favorecen la salud de consumidor. Dentro del concepto de funcional se encuentran los alimentos con microorganismos probióticos, los cuales al ser ingeridos en dosis adecuadas confieren diversos beneficios, estos microorganismos son sensibles a factores tecnológicos y ambientales que pueden reducir su viabilidad, estabilidad y su capacidad funcional. Existen tecnologías como la encapsulación, las cuales permiten mejorar la estabilidad de los probióticos al protegerlos mediante un material de recubrimiento. En este trabajo se realizó una búsqueda sistemática en diversas bases de datos sobre los probióticos más empleados en la industria de alimentos, su capacidad catalítica en matrices alimenticias, métodos de encapsulación, tipos de matrices en la encapsulación, estabilidad bajo condiciones gastrointestinales y los mecanismos de liberación. Se encontró que la encapsulación, además de favorecer la estabilidad de los microorganismos probióticos frente a factores adversos, condiciona según sus características, su aplicación e incorporación en matrices alimenticias de diversas cualidades.

1. Kailasapathy K. Encapsulation technologies for functional foods and nutraceutical product development. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2009; 4:1-19.

2. González-Aguilar EG, García EÁ, Los alimentos funcionales. Revista fitotecnia mexicana 2015; 38:233.

3. Jiménez-Colmenero F. Multiple emulsions; bioactive compounds and functional foods. Nutrición hospitalaria 2013; 28:1413–1421.

4. Cortés M, Puente L. Alimentos funcionales: una historia con mucho presente y futuro. Vitae 2005; 12:5–14.

5. FAO/WHO (Food and Agriculture Organization/World Health Organization). Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Guidelines for the Evaluation of Probiotics in Foods. London, Ontario, Canada: s.n.; 2002. p. 1-11.

6. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry 2011; 126:1821–1835.

7. Capela P, Hay TK, Shah NP. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International 2006; 39:203–211.

8. Fritzen-Freire CB, Prudêncio ES, Amboni RD, Pinto SS, Negrão-Murakami AN, Murakami FS. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Research International 2012; 45: 06–312.

9. Khem S, Small DM, May BK. The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food chemistry 2016; 190:717–723.

10. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 2007; 40:1107-1121

11. Stoll L, Costa TM, Jablonski A, Flôres S, de Oliveira Rios A. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology 2015; 8:1-10.

12. Li Y, Ai L, Yokoyama W. Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents. Journal of Agricultural and Food Chemistry 2013; 61:3311–3319.

13. Eratte D, McKnight S, Gengenbach TR, Dowling K, Barrow CJ, Adhikari BP. Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods 2015; 19:882-892.

14. Xu M, Gagné-Bourque F, Dumont M-J, Jabaji S. Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of Food Engineering 2016; 168:52–59.

15. Da Silva TM, Rodrigues LZ, Codevilla CF, da Silva CD, de Menezes CR. Coacervação complexa: uma técnica para a encapsulação de probióticos. Ciencia & Natura 2016; 37:49-55.

16. Pinto SS, Fritzen-Freire CB, Benedetti S et al. Potential use of whey concentrate and prebiotics ascarrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Research International 2015; 67:400–408.

17. Chávez BE, Ledeboer a. M. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Drying Technology 2007; 25:1193–1201.

18. Burgain J, Gaiani C, Linder M, Scher J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering2011; 104:467–483.

19. Saarela M, Mogensen G, Fonde R. Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 2000; 84:197–215.

20. WGO (World Gastroenterology Organisation) Practice Guideline: Probiotics and prebiotics, 2011.

21. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Bifidobacteria as probiotic agents physiological effects and clinical benefits. Alimentary Pharmacology & Therapeutics 2005; 22:495–512.

22. Bogsan CS, Ferreira L, Maldonado C, Perdigon G, Almeida SR, Oliveira MN. Fermented or unfermented milk using Bifidobacterium animalis subsp. lactis HN019: Technological approach determines the probiotic modulation of mucosal cellular immunity. Food Research International 2014; 64:283–288.

23. Liu G, Ren L, Song Z, Wang C, Sun B. Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animals BB04 from centenarians’ intestine. Food Control 2015; 50:889– 895.

24. Parra RA. Bacterias ácido lácticas: papel funcional en los alimentos. Facultad de Ciencias Agropecuarias 2010; 8:93–105.

25. Makinen K, Berger B, Bel-Rhlid R, Ananta E. Science and technology for the mastership of probiotic applications in food products. Journal of Biotechnology 2012; 162:356–365.

26. Ojha KS, Kerry JP, Duffy G, Beresford T, Tiwari BK. Technological advances for enhancing quality and safety of fermented meat products. Trends in Food Science & Technology 2015; 44:105–116.

27. Ding WK, Shah NP. Enhancing the biotransformation of isoflavones in soymilk supplemented with lactose using probiotic bacteria during extended fermentation. Journal of Food Science 2010; 75:M140–9.

28. Cho KM, Lee JH, Yun HD, Ahn BY, Kim H, Seo WT. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. Journal of Food Composition and Analysis 2011; 24:402–410.

29. LeBlanc JG, Piard J-C, Sesma F, de Giori GS. Lactobacillus fermentum CRL 722 is able to deliver active alpha-galactosidase activity in the small intestine of rats. FEMS Microbiology Letters 2005; 248:177–182.

30. Frank O, Zehentbauer G, Hofmann T. Bioresponse-guided decomposition of roast coffee beverage and identification of key bitter taste compounds. European Food Research and Technology 2005; 222:492–508.

31. Scherbl D, Muentnich S, Richling E. In vitro absorption studies of chlorogenic acids from coffee using the Ussing chamber model. Food Research International2014; 63:456–463.

32. Marafon AP, Sumi A, Alcântara MR, Tamime AY, Nogueira de Oliveira M. Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT - Food Science and Technology 2011; 44:511–519.

33. De Man, JC., Rogosa, D., Sharpe M. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 1960; 23:130–135.

34. Urribarrí L, Vielma A, Paéz G, Ferrer J, Mármol Z. Producción de ácido láctico a partir de suero de leche, utilizando Lactobacillus helveticus en cultivo continuo. Revista Científica 2004; 14:297–302.

35. Garro MS, de Valdez GF, de Giori GS. Temperature effect on the biological activity of Bifidobacterium longum CRL 849 and Lactobacillus fermentum CRL 251 in pure and mixed cultures grown in soymilk. Food Microbiology 2004; 21:511–518.

36. Rodríguez-Barona S, Giraldo GI, Zuluaga YP. Evaluación de la incorporación de fibra prebiótica sobre la viabilidad de Lactobacillus casei impregnado en matrices de mora (Rubus glaucus). Información tecnológica 2015; 26:25–34.

37. Restrepo AM, Cortés M, Márquez CJ. Uchuvas (Physalis peruviana l) mínimamente procesadas fortificadas con vitamina E. Vitae 2009; 16:19–30.

38. Arango ZT, Cortés M, Montoya OI. Frutos de uchuva (physalis peruviana l.) ecotipo “Colombia” mínimamente procesados, adicionados con microorganismos probióticos utilizando la ingeniería de matrices. Revista Facultad Nacional de Agronomía 2010; 63:5395–5407.

39. Parzanese TM. Tecnologías para la Industria Alimentaria: Desarrollo de prebióticos y probióticos. Alimentos Argentinos Ficha 12. 2014; 1–9.

40. López A, Deladino L, Navarro A, Martino M. Encapsulación de compuestos bioactivos con alginatos para la industria de alimentos. @limentech Ciencia y Tecnología Alimentaria 2012; 10:18–27.

41. Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. Journal of Food Engineering 2010; 98:309–316.

42. Valero-Cases E, Frutos MJ. Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT - Food Science and Technology 2015; 64:824–828.

43. Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods 2014; 9:225–241.

44. Lopera S, Guzmán C, Cataño C. Desarrollo y caracterización de micropartículas de ácido fólico formadas por secado por aspersión , utilizando goma arábiga y maltodextrina como materiales de pared. Vitae 2009; 16:55–65.

45. Martin MJ, Lara-Villoslada F, Ruiz M, Morales ME. Effect of unmodified starch on viability of alginateencapsulated Lactobacillus fermentum CECT5716. LWT. Food Science and Technology2013; 53:480–486.

46. Turpin W, Humblot C, Guyot JP. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Applied and Environmental Microbiology2011; 77:8722–8734.

47. Pérez-Leonard H, Bueno-García G, Brizuela-Herrada MA. Microencapsulación: una vía de protección para microorganismos probióticos. ICIDCA. Sobre los Derivados de la Caña de Azúcar 2013; 47:14-25.

48. Annan NT, Borza a. D, Hansen LT. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastrointestinal conditions. Food Research International 2008; 41:184–193.

49. Khan NH, Korber DR, Low NH, Nickerson MT. Development of extrusion-based legume protein isolate– alginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Research International 2013; 54: 730–737.

50. Mokarram RR, Mortazavi S, Najafi MB, Shahidi F. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International 2009; 42:1040–1045.

51. Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology 2007; 18:184–190.

52. Aldana AS, Sandoval ER, Aponte AA. Encapsulación de Aditivos para la Industria de Alimentos. Ingenieria y Competitividad 2004; 5:73–83.

Descargas

La descarga de datos todavía no está disponible.
Sistema OJS - Metabiblioteca |