DOI: 10.17151/biosa.2017.16.1.4
Cómo citar
Simancas Pallares, M. ., & Arévalo Tovar, L. . (2017). Desempeño de cuatro métodos estadísticos para evaluación de la concordancia prueba-reprueba de variables continuas en una muestra. Biosalud, 16(1), 19–29. https://doi.org/10.17151/biosa.2017.16.1.4

Autores/as

Miguel Simancas Pallares
Universidad de Cartagena
msimancasp@unicartagena.edu.co
Luisa Arévalo Tovar
Universidad de Cartagena
larevalot@unicartagena.edu.co

Resumen

Comparar el desempeño de cuatro pruebas estadísticas para la evaluación de la confiabilidad prueba/re-prueba de variables continuas. Métodos: estudio de simulación estadística desarrollado dentro en el marco de un estudio de pruebas diagnósticas in vitro en 120 dientes que cumplieron con los criterios de selección. Para cada diente posicionado en un dispositivo de estandarización se tomaron dos radiografías digitales (T0 y T1 ) a las cuales se evaluó la longitud dental. Los datos se analizaron con estadística descriptiva y luego la comparación estadística a través de “t” de Student pareada, coeficiente de correlación intraclase, coeficiente de correlación de Pearson y coeficiente de correlación y concordancia de Lin en el paquete Stat v.13.2 para Windows (StataCorp., TX., USA). Resultados: La media de longitud dental para T0 fue 21,15 mm y para T1 21,07 mm. La prueba “t” de Student reveló una diferencia de medias de 0,089 (P=0,00). El coeficiente de correlación intraclase fue 0,877 (IC 95%: 0,43 – 0,98), coeficiente de correlación de Pearson 0,93 y el coeficiente de correlación y concordancia de Lin 0,93 (IC 95%: 0,908 – 0,956). Conclusiones: La selección de una prueba estadística para evaluación de concordancia prueba/re-prueba debe hacerse teniendo en cuenta los objetivos del estudio en cada contexto y la posibilidad de cada método estadístico de valorar la presencia de error en los datos. Así, un método que actualmente cumple con este requerimiento esencial es el coeficiente de correlación y concordancia de Lin por lo cual se recomienda su uso en futuros estudios.

1. Bahrololoomi Z, Ezoddini F, Halvani N. Comparison of Radiography, Laser Fluorescence and Visual Examination for Diagnosing Incipient Occlusal Caries of Permanent First Molars. Journal of Dentistry. 2015; 12(5):324-32.

2. Gomez J. Detection and diagnosis of the early caries lesion. BMC oral health. 2015; 15 Suppl 1:S3.

3. Niederman R. Manual and electronic probes have similar reliability in the measurement of untreated periodontitis. Evidence-based dentistry. 2009; 10(2):39.

4. Kumar LV, Sreelakshmi N, Reddy ER, Manjula M, Rani ST, Rajesh A. Clinical Evaluation of Conventional Radiography, Radiovisiography, and an Electronic Apex Locator in Determining the Working Length in Primary Teeth. Pediatric Dentistry. 2016; 38(1):37-41.

5. Leonardi Dutra K, Haas L, Porporatti AL, Flores-Mir C, Nascimento Santos J, Mezzomo LA, et al. Diagnostic Accuracy of Cone-beam Computed Tomography and Conventional Radiography on Apical Periodontitis: A Systematic Review and Meta-analysis. Journal of Endodontics. 2016;42(3):356-64.

6. Tadinada A, Mahdian M, Sheth S, Chandhoke TK, Gopalakrishna A, Potluri A, et al. The reliability of tablet computers in depicting maxillofacial radiographic landmarks. Imaging science in dentistry. 2015; 45(3):175-80.

7. Cortés-Reyes E, Rubio-Romero JA, Gaitán-Duarte H. Statistical methods for evaluating diagnostic test agreement and reproducibility. Revista Colombiana de Obstetricia y Ginecología. 2010; 61(3):247-55.

8. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine. 1998; 26(4):217-38.

9. Kramer MS, Feinstein AR. Clinical biostatistics. LIV. The biostatistics of concordance. Clinical Pharmacology & Therapeutics. 1981; 29(1):111-23.

10. Aravena PC, Moraga J, Cartes-Velásquez R, Manterola R. Validity and Reliability in Dental Research. Int J Odontostomat. 2014; 8(1):69-75.

11. Alarcón A, Muñoz S. Medición en salud: algunas consideraciones metodológicas. Rev Med Chile. 2008;1 36(1):125-30.

12. Fleiss JL. The design and analysis of clinical experiments. New York: John Wiley and Sons; 1986.

13. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45(1):255- 68.

14. Gómez-Gómez M, Danglot-Banck C, Vega-Franco L. Choosing a statistical test. Second part. Revista Mexicana de Pediatría. 2013; 80(2):81-5.

15. Student. The probable error of a mean. Biometrika. 1908; 6(1):1-25.

16. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychological bulletin. 1979; 86(2):420-8.

17. Pita-Fernández S, Pértega-Díaz S. Relación entre variables cuantitativas. Cad Aten Primaria. 1997; 4:141-4.

18. Chuan A, Thillainathan S, Graham P, Jolly B, Wong D, Smith N, et al. Reliability of numerical scales used for direct observation of procedural skills. Anaesthesia and intensive care.
2016; 44(2):201-8.

19. Flores-Mir C, Rosenblatt MR, Major PW, Carey JP, Heo G. Measurement accuracy and reliability of tooth length on conventional and CBCT reconstructed panoramic radiographs. Dental press journal of orthodontics. 2014; 19(5):45-53.

20. Oznurhan F, Tuzuner T, Baygin O, Unal M, Kapdan A, Ozturk C. Accuracy of three different apex locators and visual exam in primary teeth with and without root resorption in vitro. European journal of paediatric dentistry: Official Journal of European Academy of Paediatric Dentistry. 2014;15(4):381-4.

21. McBride GB. A proposal for strenght-of-agreement criteria for Lin’s concordance correlation coefficient. National Institution of Water & Atmospheric Research Ltd, 2005 HAM2005-062.

22. Oliveira ML, Vieira ML, Cruz AD, Boscolo FN, De Almeida SM. Gray scale inversion in digital image for measurement of tooth length. Brazilian Dental Journal. 2012; 23(6):703-6.

23. Scaf G, Morihisa O, Loffredo L de C. Comparison between inverted and unprocessed digitized radiographic imaging in periodontal bone loss measurements. Journal of applied oral science: revista FOB. 2007; 15(6):492-4.

24. Feltz CJ, Miller GE. An asymptotic test for the equality of coefficients of variation from k populations. Statistics in Medicine. 1996; 15(6):646-58.

25. Carrasco J, Jover L. Métodos estadísticos para evaluar la concordancia. Medicina Clínica (Barcelona). 2004; 122(Supl 1):28-34.

26. Olds T. Five errors about error. Journal of Science and Medicine in Sport / Sports Medicine Australia. 2002; 5(4):336-40.

27. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research / National Strength & Conditioning Association. 2005; 19(1):231-40.

28. Bodur H, Odabas M, Tulunoglu O, Tinaz AC. Accuracy of two different apex locators in primary teeth with and without root resorption. Clinical Oral Investigations. 2008; 12(2):137-41.

29. Bland JM, Altman DG. Comparing two methods of clinical measurement: a personal history. International Journal of Epidemiology. 1995; 24 Suppl 1:S7-14.

30. Bates BT, Zhang S, Dufek JS, Chen FC. The effects of sample size and variability on the correlation coefficient. Medicine and Science in Sports and Exercise. 1996; 28(3):386-91.

31. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1(8476):307-10.

32. Sánchez-Ayala A, Farias-Neto A, Vilanova LS, Costa MA, Paiva AC, Carreiro AD, et al. Reproducibility, Reliability, and Validity of Fuchsin-Based Beads for the Evaluation of Masticatory Performance. Journal of Prosthodontics: official journal of the American College of Prosthodontists. 2015.

33. Baumgartner TA. Norm-referenced measurement: reliability. Measurement concepts in physical education and exercise science. Champaing, IL: Human Kinetics; 1989. p. 45-72.

34. Bland JM, Altman DG. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Computers in Biology and Medicine. 1990; 20(5):337-40.

35. Cepeda MS, Africano JM, Polo R, Alcala R, Carr DB. Agreement between percentage pain reductions calculated from numeric rating scores of pain intensity and those reported by patients with acute or cancer pain. Pain. 2003; 106(3):439-42.

36. Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995; 346(8982):1085-7.

37. Carrasco JL, Jover L, King TS, Chinchilli VM. Comparison of concordance correlation coefficient estimating approaches with skewed data. Journal of Biopharmaceutical Statistics. 2007; 17(4):673- 84.

38. Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.

39. Bishop D. Reliability of a 1-h endurance performance test in trained female cyclists. Medicine and science in sports and exercise. 1997; 29(4):554-9.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |