Autores/as
Resumen
Las mutaciones del gen PAH generan deficiencia de la enzima fenilalanina hidroxilasa. Su actividad final varía desde una actividad casi nula o indetectable en la fenilcetonuria clásica hasta una actividad residual del 10 al 35% de la normal. Esta alteración corresponde al error innato del metabolismo de los aminoácidos más frecuente, afectando a 1 de cada 10.000 personas. Las diferentes cantidades de fenilalanina en sangre se traducen en un espectro amplio de manifestaciones clínicas que incluyen retraso global del desarrollo, discapacidad intelectual, convulsiones, rasgos autistas y comportamiento agresivo en los casos más graves. El diagnóstico temprano a través de los programas de tamizaje neonatal se considera prioritario pues las intervenciones oportunas evitan el daño del sistema nervioso central. Conclusiones: El diagnóstico en Colombia es tardío, las intervenciones realizadas a partir de ese momento son fútiles pues el deterioro cognitivo es irreparable, por lo tanto es imperativa la realización de pruebas diagnósticas tempranas cuando aún las intervenciones médicas pueden impactar la mejoría clínica del paciente con disminución importante de la morbilidad propia de esta patología, convirtiéndose en una necesidad la ampliación del programa de tamizaje neonatal, el cual estaría amparado bajo la ley colombiana de enfermedades huérfanas.
Palabras clave:
Citas
2. ENZYME entry 1.14.16.1.
3. Babaoğlu Aydaş S, Şirin S, Aslim B. Biochemical analysis of Centaurea depressa phenylalanine ammonia lyase (PAL) for biotechnological applications in phenylketonuria (PKU). Pharm Biol. 2016;54(12):2838- 2884.
4. Al Hafid N, Christodoulou J. Phenylketonuria: a review of current and future treatments. Transl Pediatr. 2015;4(4):304-17.
5. Flydal MI, Martinez A. Phenylalanine Hydroxylase: Funtion, Structure, and regulation. IUBMB. 2013;64:341-9.
6. Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain. Sci Rep. 2016;6:23748. doi: 10.1038/srep23748.
7. OMIM Entry - # 261600 - Phenylketonuria; PKU.
8. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188-200.
9. Cleary M, Trefz F, Muntau AC, Feillet F, van Sprosen FJ, Burlina A, et al. Fluctuations in phenylalanine concentrations in phenylketonuria: A review of possible relationships with outcomes. Mol Genet Metab. 2013;10(4):418-423.
10. White DA, Waisbren S, van Spronsen FJ. Final commentary: A new chapter. Mol Genet Metab. 2010;99:S106-7.
11. Otręba M, Buszman E, Miliński M, Wrześniok D. [Hypomelanoses transmitted from generation to generation]. Postpy Hig Med Dośw Online. 2014;68:1081-1090.
12. Pereda-Torales L, Calcáneo-García JA, Enríquez-Torrecilla R, Badillo-Báez EM, Soler-Huerta E. Identificación de un caso de fenilcetonuria a través del tamizaje neonatal. Bol Méd Hosp Infant México. 2008;65(4):290-296.
13. Vela-Amieva M, Ibarra-González I, Belmont-Martínez L. Tamiz neonatal y fenilcetonuria. Acta Pediátrica México. 2014;33(6):271.
14. Lemes A, Queijo C, Garlo P, Machado M, Queiruga G. Pesquisa neonatal. Arch Pediatría Urug. 2012;83(1):40-44.
15. Borrajo GJ. Panorama epidemiológico de la fenilcetonuria (PKU) en Latinoamérica. Acta Pediatr Mex. 2012;33:279-287.
16. Aldámiz-Echevarría L, Llarena M, Bueno MA, Dalmau J, Vitoria I, Fernández-Marmiesse A, et al. Molecular epidemiology, genotype-phenotype correlation and BH4 responsiveness in Spanish patients with phenylketonuria. J Hum Genet. 2016;61(8):731-744.
17. González-Andrade F, López R, Aguinaga G, Echeverría S, Guerrón A, Fuenmayor G. Diagnóstico y tratamiento nutricional del paciente pediátrico y adolescente con fenicetonuria. Guía de Práctica Clínica (GPC). Quito: Ministerio de Salud Pública del Ecuador; 2013.
18. Borrajo GJC. Newborn screening in Latin America at the beginning of the 21st century. J Inherit Metab Dis. 2007;30(4):466-481.
19. Comisión Económica para América Latina y el Caribe. Protección social para la in fan cia y la adolecencia en Chile. Serie Póliticas sociales N°108
20. Campistol J, González MJ, Gutiérrez AP, Vilaseca MA. Tratamiento y control de los pacientes con fenilcetonuria: resultados del Grupo Colaborativo de Unidades de Seguimiento en España. Med Clínica. 2012;138(5):185-191.
21. Lindner M, Gramer G, Haege G, Fang-Hoffmann J, Schwab KO, Tacke U, et al. Efficacy and outcome of expanded newborn screening for metabolic diseases - Report of 10 years from South-West Germany. Orphanet J Rare Dis. 2011;6:44.
22. Galán-Rodas E, Dueñas M, Obando S, Saborio M. Tamizaje neonatal en el Perú: ¿hacia dónde vamos? Rev Peru Med Exp Salud Pública. 2014;30(4).
23. De Céspedes C, Saborío M, Trejos R, Casco T. Prevención de retardo mental y otras discapacidades por tamizaje neonatal masivo en Costa Rica. Madrid: Real Patronato Sobre Discapacidad; 2003.
24. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet Lond Engl. 2010;376(9750):1417-27.
25. Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Costa G. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations. Aging Dis. 2015;6(5):390-399.
26. Vargas CR, Wajner M, Sitta A. Oxidative stress in phenylketonuric patients. Mol Genet Metab. 2011;104(Suppl):S97-99.
27. Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CR, et al. Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol. 2010;30(2):317-326.
28. Mc Guire PJ, Parikh A, Diaz GA. Profiling of Oxidative Stress in Patients with Inborn Errors of Metabolism. Mol Genet Metab. 2009;98(1-2):173-80.
29. Bar-Or D, Bar-Or R, Rael LT, Brody EN. Oxidative stress in severe acute illness. Redox Biol. 2015;4:340-5.
30. Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR, et al. Effect of short- and longterm exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients.Int J Dev Neurosci Off J Int Soc Dev Neurosci. 2009;27(3):243-247.
31. Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, et al. Antioxidant status in hyperphenylalaninemia. Clin Chim Acta. 1998;276(1):1-9.
32. Veyrat-Durebex C, Debeissat C, Blasco H, Patin F, Henique H, Emond P, et al. Hyperphenylalaninemia Correlated with Global Decrease of Antioxidant Genes Expression in White Blood Cells of Adult Patients with Phenylketonuria. JIMD Rep. 2017. doi: 10.1007/8904_2017_16.
33. Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, et al. Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta. 2005;1740(1):68-73.
34. Van Bakel MM, Printzen G, Wermuth B, Wiesmann UN. Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr. 2000;72(4):976-981.
35. Wilke BC, Vidailhet M, Favier A, Guillemin C, Ducros V, Arnaud J, et al. Selenium, glutathione peroxidase (GSH-Px) and lipid peroxidation products before and after selenium supplementation. Clin Chim Acta Int J Clin Chem. 1992;207(1-2):137-142.
36. Artuch R, Vilaseca MA, Moreno J, Lambruschini N, Cambra FJ, Campistol J. Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr. 1999;70(5):892-895.
37. Castillo M, Zafra MF, Garcia-Peregrin E. Inhibition of brain and liver 3-hydroxy-3-methylglutaryl-CoA reductase and mevalonate-5-pyrophosphate decarboxylase in experimental hyperphenylalaninemia. Neurochem Res. 1988;13(6):551-555.
38. Ormazábal A, Artuch R, Vilaseca MA, García-Cazorla A, Campistol J. Mecanismos de patogenia en la fenilcetonuria: alteraciones del metabolismo de los meurotransmisores y del sistema antioxidante. Rev Neurol. 2004;39(10):956-961.
39. Pascucci T, Ventura R, Puglisi-Allegra S, Cabib S. Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. Neuroreport. 2002;13(18):2561-4.
40. Landvogt C, Mengel E, Bartenstein P, Buchholz HG, Schreckenberger M, Siessmeier T, et al. Reduced cerebral fluoro-L-dopamine uptake in adult patients suffering from phenylketonuria. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2008;28(4):824-831.
41. Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V. Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport. 2000;11(6):1361-4.
42. Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, et al. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169-78.
43. De Groot MJ, Sijens PE, Reijngoud D-J, Paans AM, van Spronsen FJ. Phenylketonuria: brain phenylalanine concentrations relate inversely to cerebral protein synthesis. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(2):200-205.
44. Hoeksma M, Reijngoud D-J, Pruim J, de Valk HW, Paans AMJ, van Spronsen FJ. Phenylketonuria: High plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metab. 2009;96(4):177-182.
45. Nagasaka H, Tsukahara H, Okano Y, Hirano K, Sakurai T, Hui S-P, et al. Changes of lipoproteins in phenylalanine hydroxylase-deficient children during the first year of life. Clin Chim Acta Int J Clin Chem. 2014;433:1-4.
46. Shefer S, Tint GS, Jean-Guillaume D, Daikhin E, Kendler A, Nguyen LB, et al. Is there a relationship between 3-hydroxy-3-methylglutaryl coenzyme a reductase activity and forebrain pathology in the PKU mouse? J Neurosci Res. 2000;61(5):549-563.
47. Giovannini M, Verduci E, Radaelli G, Lammardo A, Minghetti D, Cagnoli G, et al. Long-chain polyunsaturated fatty acids profile in plasma phospholipids of hyperphenylalaninemic children on unrestricted diet. Prostaglandins Leukot Essent Fatty Acids. 2011;84(1-2):39-42.
48. Infante JP, Huszagh VA. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol Genet Metab. 2001;72(3):185-198.
49. Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CMD. Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res. 2002;27(5):353-357.
50. Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CMD. Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci Off J Int Soc Dev Neurosci. 2003;21(2):111-116.
51. Benavides J, Gimenez C, Valdivieso F, Mayor F. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats. Biochem J. 1976;160(2):217-222.
52. Brown DA, Cook RA. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation. Biochemistry (Mosc). 1981;20(9):2503-12.
53. Bushueva TV, Ladodo KS, Spirichev VB, Denisova SN, Rybakova EP. [Calcium homeostasis and calciumregulating hormones in young children with phenylketonuria]. Vopr Pitan. 1993;(3):16-21.
54. Demirdas S, Coakley KE, Bisschop PH, Hollak CEM, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015;10:17.
55. Yu YG, Tang FG, Pan J, Gu XF. Effects of phenylalanine and its metabolites on cytoplasmic free calcium in cortical neurons. Neurochem Res. 2007;32(8):1292-1301.
56. Kayaalp E, Treacy E, Byck, S, Nowacki P. Human Phenylalanine Hydroxylase Mutations and Hyperphenylalaninemia Phenotypes: A Metanalysis of Genotype-Phenotype Correlations. Am J Hum Genet. 1997;61(6):1309-17.
57. Mitchell JJ. Phenylalanine Hydroxylase Deficiency. En: Pagon RA, Adam MP, Ardinger HH, Wallace
SE, Amemiya A, Bean LJ, et al., editores. GeneReviews(®). Seattle (WA): University of Washington, Seattle; 1993.
58. Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol. 2007;32(2):645-668.
59. Hood A, Antenor-Dorsey JAV, Rutlin J, Hershey T, Shimony JS, McKinstry RC, et al. Prolonged Exposure to High and Variable Phenylalanine Levels over the Lifetime Predicts Brain White Matter Integrity in Children with Phenylketonuria. Mol Genet Metab. 2015;114(1):19-24.
60. Rasner M, Vomero A, Varacchi C, Peluffo G, Giachetto G, Kanopa B. Fenilcetonuria. Descripción de un caso clínico. Arch Pediatr Urug. 2014;85(1):29-33.
61. Hood A, Grange DK, Christ SE, Steiner R, White DA. Variability in Phenylalanine Control Predicts IQ and Executive Abilities in Children with Phenylketonuria. Mol Genet Metab. 2014;111(4):445-451.
62. Romani C, Palermo L, MacDonald A, Limback E, Hall SK, Geberhiwot T. The Impact of Phenylalanine Levels on Cognitive Outcomes in Adults With Phenylketonuria: Effects Across Tasks and Developmental Stages. Neuropsychology. 2017;31(3):242-254.
63. Benítez V, San Julián E, Rodríguez MM. Fenilcetonuria. A próposito de dos pacientes. Arch. Pediatr. Urug. 2001;72(4).
64. Güttler F, Azen C, Guldberg P, Romstad A, Hanley WB, Levy HL, et al. Relationship among genotype, biochemical phenotype, and cognitive performance in females with phenylalanine hydroxylase deficiency: report from the Maternal Phenylketonuria Collaborative Study. Pediatrics. 1999;104(2 Pt 1):258-262.
65. Koch R, Fishler K, Azen C, Guldberg P, Güttler F. The relationship of genotype to phenotype in phenylalanine hydroxylase deficiency. Biochem Mol Med. 1997;60(2):92-101.
66. Paine RS. The Variability in Manifestations of Untreated Patients with Phenylketonuria (phenylpyruvic Aciduria). Pediatrics. 1957;20(2):290-302.
67. Nissenkorn A, Michelson M, Ben-Zeev B, Lerman-Sagie T. Inborn errors of metabolism: a cause of abnormal brain development. Neurology. 2001;56(10):1265-72.
68. Rouse B, Azen C. Effect of high maternal blood phenylalanine on offspring congenital anomalies and developmental outcome at ages 4 and 6 years: the importance of strict dietary control preconception and throughout pregnancy. The Journal of Pediatrics. 2014;144(2):235-9.
69. Prick BW, Hop WC, Duvekot JJ. Maternal phenylketonuria and hyperphenylalaninemia in pregnancy: pregnancy complications and neonatal sequelae in untreated and treated pregnancies. Am J Clin Nutr. 2012;95(2):374-382.
70. Koch R, Hanley W, Levy H, Matalon K, Matalon R, Rouse B, et al. The Maternal Phenylketonuria International Study: 1984-2002. Pediatrics. 2003;112(Supplement 4):1523-9.
71. Arrieta F, Bélanger A, Vázquez C, Martínez M. Importancia del diagnóstico precoz de fenilcetonuria en la mujer y del control de los niveles de fenilalanina en la gestación. Nutr Hosp. 2012;27(5):1658-61.
72. Fernández-Lainez C, Vela-Amieva M, Ibarra-González I. Espectometría de masas en téndem: una nueva herramienta para el estudio de la metabolímica en pediatría. Acta Pediatr Mex. 2009;30:258-263.
73. Regier DS, Greene CL. Phenylalanine Hydroxylase Deficiency. En: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, et al., editores. GeneReviews(®). Seattle (WA): University of Washington, Seattle; 1993.
74. Ruiz JG, Romero R, Buitrago A. Guía de la práctica clínica. Detección de anomalías congénitas en el recién nacido. Bogotá: Ministerio de Salud y Protección Social - Colciencias; 2013.
75. Currea S, Bustos JC, Calderón CA, Pardo R. Guía de promoción de la salud y prevención de enfermedades en salud pública. Guía 9: Guía para la atención del recién nacido. Bogotá: Ministerio de Salud y Protección Social; 2015.
76. Bermúdez AJ, Valera D de los Á, Robayo DB, Ascencio A, Ching RB. Desarrollo de la tamización neonatal en Colombia: espectrometría de masas en tándem. Pediatría. 2015;48(02):47-54.
77. Bernal J, Suárez F. La carga de la enfermedad genética en Colombia, 1996-2025. Univ. Méd. Bogotá (Colombia). 2008;49(1):12-28.
78. Rosselli D, Rueda JD, Ruiz-Patiño A. Análisis de costos de la tamización neonatal universal mediante espectrometría de masas en tándem para errores innatos del metabolismo en Colombia. Pediatría. 2014;47(03):68-73.
79. República de Colombia. Ministerio de Salud y de la Protección social. Ley 1392 de 2010 sobre las Enfermedades Huérfanas. Bogotá 2010.
80. Thiele AG, Rohde C, Mütze U, Arelin M, Ceglarek U, Thiery J, et al. The challenge of long-term tetrahydrobiopterin (BH4) therapy in phenylketonuria: Effects on metabolic control, nutritional habits and nutrient supply. Mol Genet Metab Rep. 2015;4:62-67.
81. Guest JF, Bai JJ, Taylor RR, Sladkevicius E, Lee PJ, Lachmann RH. Costs and outcomes over 36 years of patients with phenylketonuria who do and do not remain on a phenylalanine-restricted diet. J Intellect Disabil Res JIDR. 2013;57(6):567-579.
82. Awiszus D, Unger I. Coping with PKU: results of narrative interviews with parents. Eur J Pediatr. 1990;149(Suppl 1):S45-51.
83. Schwahn B, Mokov E, Scheidhauer K, Lettgen B, Schönau E. Decreased trabecular bone mineral density in patients with phenylketonuria measured by peripheral quantitative computed tomography. Acta Paediatr. 1998;87(1):61-63.
84. Bickel H, Gerrard J, Hickmans EM. The influence of phenylalanine intake on the chemistry and behaviour of a phenyl-ketonuric child. Acta Paediatr. 1954;43(1):64-77.
85. Fitzgerald B, Morgan J, Keene N, Rollinson R, Hodgson A, Dalrymple-Smith J. An investigation into diet treatment for adults with previously untreated phenylketonuria and severe intellectual disability. J Intellect Disabil Res JIDR. 2000;44(Pt 1):53-59.
86. Williamson M, Dobson JC, Koch R. Collaborative study of children treated for phenylketonuria: study design. Pediatrics. 1977;60(6):815-821.
87. Burton BK, Grange DK, Milanowski A, Vockley G, Feillet F, Crombez EA, et al. The response of patients with phenylketonuria and elevated serum phenylalanine to treatment with oral sapropterin dihydrochloride (6R-tetrahydrobiopterin): a phase II, multicentre, open-label, screening study. J Inherit Metab Dis. 2007;30(5):700-707.
88. Trunzo R, Santacroce R, D’Andrea G, Longo V, De Girolamo G, Dimatteo C, et al. Phenylalanine hydroxylase deficiency in south Italy: Genotype-phenotype correlations, identification of a novel mutant PAH allele and prediction of BH4 responsiveness. Clin Chim Acta Int J Clin Chem. 2015;450:51-55.
89. Polak E, Ficek A, Radvanszky J, Soltysova A, Urge O, Cmelova E, et al. Phenylalanine hydroxylase deficiency in the Slovak population: genotype-phenotype correlations and genotype-based predictions of BH4-responsiveness. Gene. 2013;526(2):347-355.
90. Couce ML, Bóveda MD, Fernández-Marmiesse A, Mirás A, Pérez B, Desviat LR, et al. Molecular epidemiology and BH4-responsiveness in patients with phenylalanine hydroxylase deficiency from Galicia region of Spain. Gene. 2013;521(1):100-104.
91. Bueno MA, González-Lamuño D, Delgado-Pecellín C, Aldámiz-Echevarría L, Pérez B, Desviat LR, et al. Molecular epidemiology and genotype-phenotype correlation in phenylketonuria patients from South Spain. J Hum Genet. 2013;58(5):279-284.
92. Levy HL, Milanowski A, Chakrapani A, Cleary M, Lee P, Trefz FK, et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet. 2007;370(9586):504- 510.
93. Trefz FK, Burton BK, Longo N, Casanova MM-P, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr. 2009;154(5):700-707.
94. Matalon R, Michals-Matalon K, Bhatia G, Burlina AB, Burlina AP, Braga C, et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis. 2007;30(2):153-158.
95. Rouse B, Azen C, Koch R, Matalon R, Hanley W, de la Cruz F, et al. Maternal Phenylketonuria Collaborative Study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. Am J Med Genet. 1997;69(1):89-95.
96. Matalon KM, Acosta PB, Azen C. Role of nutrition in pregnancy with phenylketonuria and birth defects. Pediatrics. 2003;112(6 Pt 2):1534-6.
97. Trefz FK, Blau N. Potential role of tetrahydrobiopterin in the treatment of maternal phenylketonuria. Pediatrics. 2003;112(6 Pt 2):1566-9.
98. Singh RH, Rohr F, Frazier D, Cunningham A, Mofidi S, Ogata B, et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med. 2014;16(2):121-131.
99. Singh RH, Cunningham AC, Mofidi S, Douglas TD, Frazier DM, Hook DG, et al. Updated, web-based nutrition management guideline for PKU: An evidence and consensus based approach. Mol Genet Metab. 2016;118(2):72-83.
100. Committee the AC of MG and GT. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16(2):188-200.