DOI: 10.17151/vetzo.2019.13.1.8
How to Cite
Gutiérrez Lozano, J. S. ., Rajão, M. P., Osorio, C. ., Rubatino, F., Marliére, M. ., & Gonçalves de Melo, E. . (2019). Omega-conotoxin MVIIC on experimental spinal cord trauma in rats. Revista Veterinaria Y Zootecnia (On Line), 13(1), 99–122. https://doi.org/10.17151/vetzo.2019.13.1.8

Authors

Juan Sebastian Gutiérrez Lozano
Universidade Federal de Mina Gerais
sebasgutierrezmvz@gmail.com
Maria Paula Rajão
Universidade Federal de Mina Gerais
sebasgutierrezmvz@gmail.com
Carla Osorio
Universidade Federal de Mina Gerais
sebasgutierrezmvz@gmail.com
Fernando Rubatino
Instituto de Ensino e Pesquisa Santa Casa
sebasgutierrezmvz@gmail.com
Marina Marliére
Universidade Federal de Mina Gerais
sebasgutierrezmvz@gmail.com
Eliane Gonçalves de Melo
Universidade Federal de Mina Gerais
sebasgutierrezmvz@gmail.com

Abstract

Introduction: Spinal cord lesions produce an exacerbated calcium input, being the most critical step after the spinal cord injury, mainly due to the activation of voltage-dependent calcium channels. Thus, calcium channel blockers could have a high potential to reduce spinal cord injuries. Aim: To evaluate the neuroprotective effect of omega-conotoxin MVIIC obtained from the poison of Conus magus in rats with spinal cord trauma. Methods: Thirty-six adult, male, Wistar rats were randomly divided into six groups. Animals in the negative control group underwent dorsal laminectomy. In the other groups, in addition to laminectomy, the animals underwent acute bruised trauma using the MASCIS impactor. Intrathecal placebo application was performed in the animals of the positive control groups. In groups G3 and G5 doses of 15 and 30 pmol of the Omega-conotoxin toxin MVIIC were applied, respectively, in the treated animals, 5 minutes after the trauma. In groups G4 and G6, doses of 15 and 30 pmol were applied, respectively, one hour after the trauma. Segments of the spinal cord were collected to quantify reactive oxygen species and lipid peroxidation, and to assess gene expression of factors related to apoptosis using a qRT-PCR technique. Results: No significant differences were found for the treatments evaluated regarding the free radical production and reactions of lipid peroxidation. However, the use of 15 pmol of omega-conotoxin MVIIC 1 hour after trauma tended to be better than the other evaluated doses. Conclusions: Omegaconotoxin MVIIC could be useful for the treatment of spinal cord trauma in rats. However, further studies are necessary to determine the adequate dose of this substance.

Ackery, A.; Tator, C.; Krassioukov, A. A Global perspective on Spinal Cord injury Epidemiology. J. Neurotrauma, v. 21, n. 10, p. 1355-1370, 2004.

Aslan, A.; Cemek, M.; Buyukokuroglu, M.E. et al. Dantrolene can reduce secondary damage after spinal cord injury. Eur. Spine J., v. 18, p. 1442-1451, 2009.

Bartholdi, D.; Schwab, M.E. Expression of pro-inflamattory cyitokine and chemokine mRNA upon experimental spinal cord in mouse: an in situ hydridization sutdy.Eur. J. Neurosc., v. 7, p. 1422-1438, 1997.

Basso, D.M.; Beattie, M.S.; Bresnaham , J.C.A. sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma, v. 1, p. 1-21, 1995.

Basso, M.; Beattie, M.S.; Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion the NYU weight-drop device versus transection. Exp. Neurol., v. 139, n. 2, p. 244-256, 1996.

Bingham, J.; Mitsunaga, E.; Bergeron, Z.L. Drugs from slugs – Past, presente and future perspectives of ω-conotoxin research. Chemico-Biological, v. 183, p. 1-18, 2010.

Bo, W.; Xian-Jun, R. Control of demyelination for recovery of spinal cord injury.Chin. J. Traumatol., v. 11, n. 5, p. 306-310, 2008.

Brito, L.M.O.; Chein, M.B.C.; Marinho, S.C.; Duarte, T.B. Avaliação epidemiológicas dos pacientes vítimas de traumatismo raquimedular. Rev. Col. Bras. Cir, v. 38, p. 304-309, 2011.

Brouns, R.; Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosur., v. 11, p. 483-495, 2009.

Coelho, R.M.P. Efeito neuroprotetor da toxina phα1β recombinante no traumamedular agudo em ratos. 2016. 76 f. Dissertação (Mestrado). Universidade Federal de Minas Gerais, programa de pós-graduação em ciência animal, Belo Horizonte. 2016.

Dasari, V.R; Spomar, D.G.; Gondi, C.S.; Sloffer, C.A.; Saving, K.L.; Gujrati, M.; Rao, J.S.; Dinh, D.H. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma, v. 24, p. 391-410, 2007.

de Souza, A.H.; Castro Jr C.J.; Rigo, F.K.; De Oliveira, S.M.; Gomez, R.S.; Diniz, D.M. An evaluation of the antinociceptive effects of Phα1β, a neurotoxina from the spider Phoneutria nigriventer, and ω-conotoxin MVIIA, a cone snail Conus magustoxin, in a rat model of inflammatory and neuropathic pain. Cell. Mol. Neurobiol., v. 33, p.58-67, 2013.

Degterev, A.; Boyce, M.; Yuan, J. A decade of caspases. Oncogene, v. 53, p.8543- 8567, 2003.

Diniz, D.M.; De Souza, A.H.; Pereira, E.M.R.; Da Silva, J.F.; Rigo, F.K.; Romano'silva, M.A.; Binda, N.; Castro, C.J.; Cordeiro, M.N. ; Ferreira, J.; Gomez, M.V. Effects of the calcium channel blockers Phα1β and ωconotoxin MVIIA on capsaicin and acetic acid-induced visceral nociception in mice.Pharmacology, Biochemistry and Behavior, v. 126, p. 97-102, 2014.

Diniz, D.M. Ação farmacológica da toxina Phα1β isolada do veneno da aranha Phoneutria nigriventer em modelos de dor visceral em camundongos. 2012.Dissertação (pós-graduação em Medicina e Biomedicina). Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte.


Drummond, B.L. Subfração PnTx 3-6 do veneno da aranha armadeira (Phoneutria nigrivebter) no tratamento de ratos wistar submetidos ao trauma agudo compressivo à medula espinhal. 2010. 52p. Dissertação (Mestrado em Ciência Animal) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.

Estrada, G.; Villegas, E.; Corzo, G. Spider venoms: a rich source of acylpolyamines and peptides as a new lead to CNS drugs. Nat. Prod. Rep., v. 24, p.145- 161, 2007.

Fighera, R.A.; Silva, M.C.; Souza, T.M. et al. Aspectos patológicos de 155 casos fatais de cães atropelados por veículos automotivos. Ciência Rural, v. 38, p. 1375- 1380, 2008.

Gomez M.V.; Kalapothakis, E.; Guatimosim, C.; Prado, M.A. Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cell Mol Neurobiol, v. 22, p.579-588, 2002.

Gonçaves J.M.; Ferreira, J.; Prado, M.A.; Cordeiro, M.N.; Richardson, M.; Pinheiro, C.A.N.; Silva, M.A.R.; Castro Junior, C.J.; Souza, A.H.; Gomez, M.V. The effect of spider toxin PhTx3-4, ω-conotoxins MVIIA and MVIIC on glutamate uptake and on capsaicin-induced glutamate release and [Ca2+] in spinal cord synaptosomes. Cell Mol Neurobiol, v. 31, p. 277-283, 2011.

Gross, A.; Mcdonell, J.M.; Korsmeyer, J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev., v.13, p.1899-1911, 1999.

Hagg, T.; Oudega, M. Degenerative and spontaneous regenerative processes after spinal cord injury. J.Neurotrauma, v.23, p.263-280, 2006.

Hillyard, D.R.; Monje, V.D.; Mintz, I.M. et al. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron, v. 9, p. 69-77, 1992.

Imaizumi, T.; Kocsis, J.D.; Waxman, S.G. The role of voltage-gated Ca++ channels in anoxic injury of spinal cord matter. Brain Res., v. 817, p. 84-92, 1999.

Jia, X.; Kowalski, R.G.; Sciubba, D.M. et al. Critical Care of Traumatic Spinal Cord Injury. J. Intensiv. Care Med., v. 28, p. 12-23, 2013.

Karalija, A.; Novikova, L.N.; Kingham, P.J. et al. The effects of n-acetyl-cysteine and acetyl-l-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury. Neuroscience, v. 260, p. 143-151, 2014.

Kawaguchi, M.; Furuya, H.; Patel, P. Neuroprotective effects of anesthetic agents. J.Anesth., v. 19, p. 150156, 2005.

Kim, Y.; Park, Y.K.; Cho, H. et al. Long-term changes in expressions of spinal glutamate transporters after spinal cord injury. Brain Res., v. 1389, p. 194-199, 2011.

Lanz, O.; Bergman, R.; Shell, L. Initial assessment of patients with spinal cord trauma.Vet. Med., p. 851-854, 2000.

Liu, D.; Liu, J.; Wen, J. Elevation of hydrogen peroxide after spinal cord injury detected by using the fenton reaction. Free Radical Bio. Med., v. 27, p. 478-482, 2011.

Liu, Z.-Q.; Xing, S.-S.; Zhang, W. Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion. J. Spinal Cord Med., v. 36, p. 147-152, 2016.

Martins, B.C. Efeitos da associação do riluzol ao dantrolene em ratos submetidos ao trauma medular agudo. 2012. 70p. Dissertação (Mestrado em Ciência Animal) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.

McDonough, S.I.; Swartz, K.J.; Mintz, I.M.; Boland, L.M.; Bean, B.P. Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. J Neurosci, v. 15, p. 2612-2623, 1996.

Mendes, D.S.; Arias, M.V.B. Traumatismo da medula espinhal em cães e gatos: estudo prospectivo de 57 casos. Pesq. Vet. Bras., v. 32, p. 1304-13012, 2012.

Metz, G.A.; Merkler, D.; Dietz, V.; Schwab, M.E.; Fouad, K. Efficient testing of motor function in spinal cord injured rats. Brain Res, v. 883, p. 165-177, 2000.

Minami, K.; Raymond, C.; Martin-Moutot, N. Role of Thr in the binding of omegaconotoxing MVIIC to N-type Ca channels. FEBS Let., v. 491, p. 127-130, 2001.

Oliveira, K.M. Efeitos de diferentes doses de ω–conotoxina MVIIC no tratamento de ratos submetidos ao trauma medular agudo compressivo. 2012. 61 p.Dissertação (Mestrado em Medicina e Cirurgia Veterinárias) – Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte.

Oliveira, K.M.; Lavor, M.S.L.; Silva, C.M.O. et al. Omega-conotoxin MVIIC attenuates neuronal apoptosis in vitro and improves significant recovery after spinal cord injury in vivo in rats. Int. J. Clin. Exp. Pathol., v. 7, p. 3524-3536, 2014.

Oyinbo, C.A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp, v.71, p.281-299, 2011.

Portt, L.; Norman, G.; Clapp, C. et al. Anti-apoptosis and cell survival: a review.Biochim. Biophys. Acta, v. 1813, p. 238-259, 2011.

Santos, G.B.; Cristante, A.F.; Marcon, R.M.; Souza, F.I.; Barros Filho, T. E.P.; Damasceno, M.L. Modelo experimental de lesão medular e protocolo de avaliação motora em ratos wistar. Acta ortop. Bras,. v. 19, n.2, 2011.

Souza, A.H.; Lima, M.C.; Drewes, C.C. et al. Antiallodynic effect and side effects of Pha1b, a neurotoxin from the spider Phoneutria nigriventer: Comparison withωconotoxin MVIIA and morphine. Toxicon, v. 58, p. 626-633, 2011.

Springer, J.E.; Azbill, R.D.; Kennedy, S.E. et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochemistry, v.69, p. 1592-1600, 1997.

Springer, J.E.; Azbill, R.D.; Kennedy, S.E. et al. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochemistry, v.69, p. 1592-1600, 1997.

Torres, B.; Serakide, R.; Caldeira, F. et al. The ameliorating effect of dantrolene on the morphology of urinary bladder in spinal cord injured rats. Pathol. Res. Pract. v. 207, p. 775-779, 2011.

Torres, B.B.J.; Caldeira, F.M.C.; Gomes, M.G. et al. Effects of dantrolene on apoptosis and immunohistochemical expression of NeuN in the spinal cord after traumatic injury in rats. Int. J. Exp. Path., v. 91, p. 530-536, 2010.

Thrall, M.A. Veterinary hematology and clinical chemistry. Philadelphia: Lippincott Williams & Wilkins, 2004. 518p.

Wu, Y.; Zheng, M.; Wang, S. et al. Spatiotemporal pattern of TRAF3 expression after rat spinal cord injury. J. Mol. Hist., DOI 10.1007/s10735-014-95752, 2014.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |