How to Cite
Rosero Moreno, M. ., Enriquez Brand, A. L. ., Rodríguez Martínez, G., & Chamorro Bolaños, X. . (2010). Assembly and validation of the method of analysis by combustion and detection by non-dispersive infrared for the determination of total organic carbon (cot) in water. Luna Azul, (30), 10–23. Retrieved from https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1142

Authors

Milton Rosero Moreno
milton.rosero@ucaldas.edu.co
Alba Lucy Enriquez Brand
a@hotmail.com.co
Goria Rodríguez Martínez
a@hotmail.com.co
Ximena Chamorro Bolaños
a@hotmail.com.co

Abstract

ABSTRACT

The combustion analysis technique and non-dispersive infrared (NDIR) detection was validated for the determination of organic matter in water, quantified as total organic carbon (TOC). Previously, the elimination of inorganic carbon (IC) of the sample with an optimum time of 1.5 min and an acid ratio of 5% was optimized. A linear dynamic range (LDR) between 3 and 20 mg/L of TOC was established, in which the regression line met the parameters that credited its linearity as analyzed by the least squares method, showing a correlation coefficient of 0,9994. The sensitivity expressed by the slope of the regression line indicated a variation of about 5 units in the detector response for each mg/L of TOC. The detection and quantification limits obtained from the regression line were 0.517 and 1.722 mg/L of TOC, respectively. The precision of the technique, aiming at 5% coefficient of variation (CV), was better in the drinking water at concentrations close to it (about 7 mg/L of TOC), whereas larger deviations were presented at concentrations near the lower and upper limits of LDR. The recoveries of known concentrations of real added samples of 85% with low added values, and 83% with high added values that suggest a reevaluation of the performance of the technique with respect to its accuracy, however the recovery goal was reached between 70 to 130%. The technique established is thereby capable of analyzing untreated, drinking and waste water and its use is feasible in monitoring advanced oxidation processes applied in the treatment of drinking water.

1. Revee, Roger N. (2002). Introduction to environmental analysis. Inglaterra: John Wiley & Sons, Ltd.

2. Gomella, C., Guerree, H. (1977). Tratamiento de aguas para abastecimiento público. Barcelona: editores técnicos asociados, S.A.

3. Snoeyink, Vernon; Illinois, Urbana; Jenkins, David. (1994). Química del agua. Berkeley: LIMUSA.

4. Colin, Baird. (2001). Química Ambiental. Madrid: Ed. Reverté S.A.

5. Villegas, C. 2005. Evaluación de la formación potencial de trihalometanos y trihalometanos en agua potable, usando microextracción en fase sólida como método de extracción. Bogotá. Septiembre 2009 Disponible en: http://www.uninorte.edu.co/extensiones/IDS/Ponencias/ponencias/20 14/20octubre/Los trihalometanos y su control.

6. Wong, H., Mok, K.M., Fan, X.J. (2007). Natural organic matter and formation of trihalomethanes in two water treatment processes. Desalination, 210, 44-51.

7. Sirivedgin, T., Gray, K. (2005). Comparison of the disinfection by-product formation potentials between a wastewater effluent and surface waters. Water Research, 39, 1025-1036.

8. Rosero, M., Latorre, J., Torres, W., Delgado, L. (2004). Presencia de materia orgánica y subproductos de la desinfección con cloro. Caso sistema de tratamiento de agua para consumo humano, Puerto Mallarino, Cali - Colombia. Tesis de Maestría. Universidad del Valle, Cali.

9. Wallace, B., Purcell, M., Furlong, J. (2002). Total organic carbon analysis as a precursor to disinfection byproducts in potable water: Oxidation technique considerations. J. Environ. Monit., 4, 35-42.

10. Gallard, H., Gunten, U. (2002). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research, 36, 65-74.

11. Gang, D., Clevenger, T.E., Banerji, S.K. (2003). Relationship of chlorine decay and THMs formation to NOM size. Journal of Hazardous Materials, A96, 1-12.

12. Liu, W., Cheung, L., Yang, X., Shang, C. (2006). THM, HAA and CNCl formation from UV irradiation and chloramination of selected organic waters. Water Research, 40, 2033-2043.

13. Sorlini, S., Collivignarelli, C. (2005). Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. Desalination, 176, 103-111.

14. Uyak, V., Ozdemir, K., Toroz, Ismail. (2007). Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs. Science of the Total Environment, 378, 269-280.

15. Shimadzu Corporation. (2001). Manual de instrucciones TOC-V CSN SHIMADZU.

16. American Public Health Association, American Water Works Association y Water Pollution Control Federation Standard Methods for the Examination of Water and Wastewater. (1994) 14th, edition. Mét. 5310B.

17. EPA Method 415.1 (Combustion or Oxidation). Total Organic Carbon in Water.

18. Instituto de Hidrología, Meteorología y estudios ambientales IDEAM. Gustavo Alfonso Coy. (1999). Protocolo estandarización de métodos analíticos. Bogotá.

19. EPA, QA/QC. (1995). Guidance for sampling and analysis of sediments, water, and tissues for dredged material analysis.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |