Authors
Abstract
Objetive. A systematic literature review was conducted to identify advances in applications based on Machine Learning and Deep Learning algorithms for the analysis of land cover change and land use for prospective purposes, their covariates and the names of land cover and land use classifications. Methodology. A bibliographic retrieval was carried out consulting different digital libraries based on a search equation limited to the study period from 2000 to 2024. Subsequently, a layered reading was applied to extract information relevant to the study, which consisted in reviewing the introduction, methods, figures, tables, results and conclusions, in order to generate annotations relevant to the research. Results. A total of 55 studies were obtained, including articles, books and thesis, from which the information pertinent to the research was summarized and extracted, then related to discrimination by land coverage and land use types, drivers of change, and frequently used machine learning techniques. Additionally, a citation of the key concepts of land cover and land use with cellular automata was provided. Conclusions. When analyzing land cover and land use change toward prospective objectives, the use of cellular automata is remarkable, for the possibility of generating simulations of possible future lines, enabling scenario analysis, as well as deducing and recreating the transition rules between different land cover types or land uses, in an automated and statistically evaluable way.
Keywords
References
Alkaraki, K. F., Hazaymeh, K., Al-Tarawneh, O. M. y Jawarneh, R. N. (2024). Deep learning-based modeling of land use/land cover changes impact on land surface temperature in Greater Amman Municipality, Jordan (1980–2030). GeoJournal, 89(4), 1–21. https://doi.org/10.1007/S10708-024-11187-3/FIGURES/100
Anand, B., Rekha, R. S., Radhakrishnan, N. y Ramaswamy, K. (2023). Analysis of LULC change dynamics and its impact assessment using CA-ANN model in part of Coimbatore region, India. GeoJournal, 88(6), 5825–5845. https://doi.org/10.1007/S10708-023-10944-0/METRICS
Aniah, P., Bawakyillenuo, S., Codjoe, S. N. A., y Dzanku, F. M. (2023). Land use and land cover change detection and prediction based on CA-Markov chain in the savannah ecological zone of Ghana. Environmental Challenges, 10. https://doi.org/10.1016/J.ENVC.2022.100664
Arango, D., y Ordóñez, M. (2020). Protocolo de monitoreo de cambios de coberturas de la tierra. The Nature Conservancy, Amazon Conservation Team. https://www.nature.org/content/dam/tnc/nature/en/documents/AFC_Protocolo_Monitoreo_Coberturas_Baja.pdf
Atef, I., Ahmed, W. y Abdel-Maguid, R. H. (2024). Future land use land cover changes in El-Fayoum governorate: a simulation study using satellite data and CA-Markov model. Stochastic Environmental Research and Risk Assessment, 38(2), 651–664. https://doi.org/10.1007/S00477-023-02592-0/TABLES/12
Batty, M. (1997). Cellular Automata and Urban Form: A Primer. Journal of the American Planning Association, 63(2), 266–274. https://doi.org/10.1080/01944369708975918
Batty, M., Couclelis, H., y Eichen, M. (1997). Urban systems as cellular automata. Environment and Planning B: Urban Analytics and City Science, 24(2), 159–305. https://doi.org/10.1068/B240159/ASSET/B240159.FP.PNG_V03
Berlekamp, E. R., Conway, J. H., y Guy, R. K. (1982). Winning Ways for Your Mathematical Plays. Academic Press.
Chambers, F., Cruz, C., y Serugendo, G. D. M. (2023). Agent-based modelling of urban expansion and land cover change: a prototype for the analysis of commuting patterns in Geneva, Switzerland. HAL science ouverte. https://hal.science/hal-04146986
Charif, O., Omrani, H. y Maria, B. (2012). Cellular automata based on artificial neural network for simulating land use changes. Simulation Series, 44. https://doi.org/10.1016/j.apgeog.2014.06.016
Chisanga, C. B., Phiri, D. y Mubanga, K. H. (2024). Multi-decade land cover/land use dynamics and future predictions for Zambia: 2000–2030. Discover Environment , 2(1), 1–15. https://doi.org/10.1007/S44274-024-00066-W
Christiansen, P. y Loftsgarden, T. (2011). Drivers behind urban sprawl in Europe. https://www.researchgate.net/publication/265350927_Drivers_behind_urban_sprawl_in_Europe
Clarke, K. C., Hoppen, S. y Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247–261. https://doi.org/10.1068/B240247
Delipetrev, Blagoj., Tsinaraki, Chrisa., Kostić, U. y European Commission. Joint Research Centre. (2020). Historical Evolution of Artificial Intelligence. 1–36. https://doi.org/10.2760/8015800
Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., Ordóñez Díaz, M. de J., Escandón Calderón, J., Ordóñez Díaz, J. A. B., Nieto de Pascual Pola, M. C. del C., y Ordóñez Díaz, M. de J. (2018). Cambio en la cobertura vegetal y uso del suelo del 2000 al 2009 en Morelos, México. Revista Mexicana de Ciencias Forestales, 9(46), 27–53. https://doi.org/10.29298/RMCF.V9I46.135
Falah, N., Karimi, A., y Harandi, A. T. (2020). Urban growth modeling using cellular automata model and AHP (case study: Qazvin city). Modeling Earth Systems and Environment, 6(1), 235–248. https://doi.org/10.1007/S40808-019-00674-Z/FIGURES/8
Feng, R. y Wang, K. (2021). Spatiotemporal effects of administrative division adjustment on urban expansion in China. Land Use Policy, 101. https://doi.org/10.1016/J.LANDUSEPOL.2020.1051433
Fetene, D. T., Lohani, T. K. y Mohammed, A. K. (2023). LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia. Environmental Monitoring and Assessment, 195(11), 1–17. https://doi.org/10.1007/S10661-023-11968-2/METRICS
Frey, S. (2017). The Craft of Research (4a edition). Reference Reviews, 31(8), 1–2. Gasirabo, A., Xi, C., Hamad, B. R., y Edovia, U. D. (2023). A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda. Land, 12(9). https://doi.org/10.3390/land12091788
Gašparović, M. (2020). Urban growth pattern detection and analysis. Urban Ecology: Emerging Patterns and Social-Ecological. Systems, 35–48. https://doi.org/10.1016/B978-0-12-820730-7.00003-3
Ghalehteimouri, K. J., Nasr, T. y Bakhtiari, L. (2022). WITHDRAWN: A scenario-based approach for sustainable urban regeneration analysis in radial-concentric ring cities: A case in Hamedan, Iran. City and Environment Interactions. https://doi.org/10.1016/J.CACINT.2022.100089
González-González, A., Clerici, N., y Quesada, B. (2022). A 30 m-resolution land use-land cover product for the Colombian Andes and Amazon using cloud-computing. International Journal of Applied Earth Observation and Geoinformation, 107 https://doi.org/10.1016/J.JAG.2022.102688
Hewitt, R., Moya-Gómez, B. y Diaz-Pacheco, J. (2013). A Cellular Automata Land-Use Model For The R Software. Environment. https://doi.org/10.5446/15501
Irawan, I. A., Supriatna, S., Manessa, M. y Ristya, Y. (2019). Prediction Model of Land Cover Changes using the Cellular Automata – Markov Chain Affected by the BOCIMI Toll Road in Sukabumi Regency. KnE Engineering. https://doi.org/10.18502/KEG.V4I3.5860
Isinkaralar, O. (2024). A Methodological Benchmark in Determining the Urban Growth: Spatiotemporal Projections for Eskişehir, Türkiye. Applied Spatial Analysis and Policy, 17(4), 1485–1495. https://doi.org/10.1007/S12061-024-09592-9/FIGURES/6
Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F. y Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6. https://doi.org/10.1016/J.ENVC.2021.100399
Kang, J., Fang, L., Li, S. y Wang, X. (2019). Parallel Cellular Automata Markov Model for Land Use Change Prediction over MapReduce Framework. ISPRS International. Journal of Geo-Information, 8. https://doi.org/10.3390/IJGI8100454
Kayitesi, N. M., Guzha, A. C., Tonini, M., y Mariethoz, G. (2024). Land use land cover change in the African Great Lakes Region: a spatial–temporal analysis and future predictions. Environmental Monitoring and Assessment, 196(9), 1–23. https://doi.org/10.1007/S10661-024-12986-4/TABLES/5
Kim, B., Lim, C. G., Lee, S. H., y Jung, Y. J. (2022). A Framework of Large-Scale Virtual City Simulation with Land-Use Model. International Conference on Advanced Communication Technology, ICACT, , 58–61. https://doi.org/10.23919/ICACT53585.2022.9728864
Kulithalai Shiyam Sundar, P., y Deka, P. C. (2022). Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Environmental Science and Pollution Research, 29(57), 86220–86236. https://doi.org/10.1007/S11356-021-17257-0/METRICS
Kumar, M., Mahato, L. L., Suryavanshi, S., Singh, S. K., Kundu, A., Dutta, D., y Lal, D. (2024). Future prediction of water balance using the SWAT and CA-Markov model using INMCM5 climate projections: a case study of the Silwani watershed (Jharkhand), India. Environmental Science and Pollution Research, 31(41), 54311–54324. https://doi.org/10.1007/S11356-023-27547-4/METRICS
Lahti, J. (2008). Modelling Urban Growth Using Cellular Automata: A case study of Sydney. https://api.semanticscholar.org/CorpusID:17843132
Li, D., Li, X., Liu, X. P., Chen, Y. M., Li, S. Y., Liu, K., Qiao, J. G., Zheng, Y. Z., Zhang, Y. H., y Lao, C. H. (2012). GPU-CA model for large-scale land-use change simulation. Chinese Science Bulletin, 57(19), 2442–2452. https://doi.org/10.1007/S11434-012-5085-3/METRICS
Li, G., Sun, S., y Fang, C. (2018). The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape and Urban Planning, 174, 63–77. https://doi.org/10.1016/J.LANDURBPLAN.2018.03.004
Luo, M., Fa, L., Hao, D., Zhu, Q., Dashti, H., y Chen, M. (2023). Uncertain Spatial Pattern of Future Land Use and Land Cover Change and Its Impacts on Terrestrial Carbon Cycle Over the Arctic–Boreal Region of North America. Earth’s Future, 11. https://doi.org/10.1029/2023EF003648
Memarian, H., Balasundram, S., Talib, J., Teh, C., Sood, A., y Mikayilov, F. (2012). Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia. Journal of Geographic Information System, 44, 542–554. https://doi.org/10.4236/jgis.2012.46059
Mitsova, D., Shuster, W., y Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning, 99(2), 141–153. https://doi.org/10.1016/J.LANDURBPLAN.2010.10.001
Moreira, R. M., Lana, M., Sieber, S., y Malheiros, T. F. (2024). A landscape ecology approach: Modeling forest fragmentation with artificial neural networks and cellular-automata Markov-chain for improved environmental policy in the southwestern Brazilian Amazon. Land Degradation and Development, 35(2), 687–704. https://doi.org/10.1002/LDR.4945
Omrani, H., Charif, O., Gerber, P., Bódis, K., Basse, R. M., Omrani, H., Charif, O., Gerber, P., Bódis, K., y Basse, R. M. (2012). Simulation of land use changes using cellular automata and artificial neural network. https://EconPapers.repec.org/RePEc:irs:cepswp:2012-01
Ouma, Y. O., Nkwae, B., Odirile, P., Moalafhi, D. B., Anderson, G., Parida, B., y Qi, J. (2024). Land-Use Change Prediction in Dam Catchment Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus. Sustainability, 16(4). https://doi.org/10.3390/SU16041699
Pawe, C. K., y Saikia, A. (2024). Simulating urban land use change trajectories in Guwahati city, India. International Journal of Environmental Science and Technology, 21(4), 4385–4404. https://doi.org/10.1007/S13762-023-05305-W/METRICS
Pontius, Robert y Millones, Marco. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32, 4407-4429. https://www.tandfonline.com/doi/full/10.1080/01431161.2011.552923
Qiang, Y., y Lam, N. S. N. (2015). Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata. Environmental Monitoring and Assessment, 187(3), 1–16. https://doi.org/10.1007/S10661-015-4298-8/METRICS
Raza, D., Khushi, M., SHU, H., Aslam, H., Saleem, M. S., Ahmad, A., Mirza, S., Saeed, U., y Khan, S. U. (2024). CA-ANN based LULC prediction and influence assessment on LST-NDVI using multi-temporal satellite images. Environmental Earth Sciences, 83(5), 1–20. https://doi.org/10.1007/S12665-024-11467-8/METRICS
Rienow, A., y Goetzke, R. (2015). Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66–81. https://doi.org/10.1016/J.COMPENVURBSYS.2014.05.001
Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., y Zhang, P. (2018). Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS International Journal of Geo-Information, 7. https://doi.org/10.3390/IJGI7040154
Rodríguez Eraso, N., Armenteras-Pascual, D., y Alumbreros, J. R. (2013). Land use and land cover change in the Colombian Andes: dynamics and future scenarios. Journal of Land Use Science, 8(2), 154–174. https://doi.org/10.1080/1747423X.2011.650228
Rodríguez, J., Murcia, U. G., Castillo, N., Arias, J., Agudelo, W., Hernández, L., Romero, H., y Chavez, J. (2019). Análisis de los cambios de coberturas de la tierra en el periodo 2018 al 2020 en la Amazonía colombiana. Instituto SINCHI. https://sinchi.org.co/como-se-han-transformado-las-coberturas-de-la-tierra-en-la-amazonia-colombiana-entre-2018-2020
Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., y Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12. https://doi.org/10.3390/AGRONOMY12112772
Shivappa Masalvad, S., Patil, C., Pravalika, A., Katageri, B., Bekal, P., Patil, P., Hegde, N., Sahoo, U. K., y Sakare, P. K. (2023). Application of geospatial technology for the land use/land cover change assessment and future change predictions using CA Markov chain model. Environment, Development and Sustainability, 26(10), 24817–24842. https://doi.org/10.1007/S10668-023-03657-4/METRICS
Silva, E. A. y Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552. https://doi.org/10.1016/S0198-9715(01)00014-X
Thanekar, G. (2020). Land Use Land Cover Prediction Analysis. https://doi.org/10.13140/RG.2.2.13983.48802
Torres, L., Viana, C. M., y Rocha, J. (2023). Hybrid modeling of deforestation impacts from infrastructure projects using cellular automata and multi-agent systems. Applied Geography, 151, 102871. https://doi.org/10.1016/j.apgeog.2023.102871
Trunfio, G. A. (2005). Enhancing Cellular Automata by an Embedded Generalized Multi-layer Perceptron. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/11550822_54
UN Committee of Experts - GGIM. (2017). GGIM | United Nations Committee of Experts on Global Geospatial Information Management. https://ggim.un.org/ggim_20171012/ggim_committee.html
Veldkamp, A. y Lambin, E. F. (2001). Predicting land-use change. Ecosystems y Environment, 85(1–3), 1–6. https://doi.org/10.1016/S0167-8809(01)00199-2
Wang, S., Liu, Y., Feng, Y., y Lei, Z. (2021). To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 14(9), 1213–1235. https://doi.org/10.1080/17538947.2021.1946178
White, R. y Engelen, G. (1997). Cellular Automata as the Basis of Integrated Dynamic Regional Modelling. Sage journals, 24(2), 235–246. https://doi.org/10.1068/B240235
Wu, X., Liu, X., Zhang, D., Zhang, J., He, J. y Xu, X. (2022). Simulating mixed land-use change under multi-label concept by integrating a convolutional neural network and cellular automata: a case study of Huizhou, China. GIScience y Remote Sensing, 59(1), 609–632. https://doi.org/10.1080/15481603.2022.2049493
Yang, J., Chen, F., Xi, J., Xie, P. y Li, C. (2014a). A Multitarget Land Use Change Simulation Model Based on Cellular Automata and Its Application. Abstract and Applied Analysis. https://doi.org/10.1155/2014/375389
Yang, X., Zheng, X.-Q. y Chen, R. (2014b). A local weights-based cellular automata approach to simulate urban land use changes. International Journal of Geographical Information Science, 28(11), 2344-2362. https://doi.org/10.1080/13658816.2014.922686
Yang, J., Su, J., Chen, F., Xie, P. y Ge, Q. (2016). A Local Land Use Competition Cellular Automata Model and Its Application. ISPRS International Journal of Geo-Information, 5. https://doi.org/10.3390/IJGI5070106
Yao, Y., Liu, X., Li, X., Liu, P., Hong, Y., Zhang, Y., y Mai, K. (2017). Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science, 31(12), 2452–2479. https://doi.org/10.1080/13658816.2017.1360494
Yesserie, A. G. (2009). Spatio-temporal land use/land cover changes analysis and monitoring in the Valencia Municipality, Spain.