DOI: 10.17151/bccm.2023.27.1.4
How to Cite
Bejarano Narváez, M. J., Tamaris Turizo, C. E., González Trujillo, J. D., & Prat Fornells, N. (2023). Altitudinal variation of the communities of Chironomidae larvae (Insecta: Diptera) in a river of the Sierra Nevada de Santa Marta, Colombia. Boletín Científico. Centro De Museos, 27(1), 71–83. https://doi.org/10.17151/bccm.2023.27.1.4

Authors

Mario Javier Bejarano Narváez
Universidad del Magdalena
mariobejaranojn@unimagdalena.edu.co
https://orcid.org/0000-0002-6973-0330
Perfil Google Scholar
Cesar Enrique Tamaris Turizo
Universidad del Magdalena
a@hotmail.com
https://orcid.org/0000-0002-9600-4641
Perfil Google Scholar
Juan David González Trujillo
Museo Nacional de Ciencias Naturales
jdgonzalezt@gmail.com
https://orcid.org/0000-0001-6870-6278
Perfil Google Scholar

Abstract

Among the aquatic insects, the Chironomidae (Order Diptera) is one of the most widespread and ecologically diverse families in freshwater ecosystems. Yet, knowledge of its altitudinal distribution and underlying drivers is still scarce in tropical regions. Objective: To describe the taxonomic diversity and altitudinal distribution of the Chironomidae family along the Gaira River (the Sierra Nevada de Santa Marta). Methodology: We sampled Chironomid assemblages at three sites along an altitude gradient (60, 900, and 1700 masl) between 2018 and 2019, covering the dry and rainy periods (eight samplings in total). Samples were taken with a Surber net on the gravel and sediment substrates, and by manual collectionon the litter and stone substrates. A total of 1319 larvae were collected, and distributed in 3 subfamilies (Chironominae, Orthocladiinae, and Tanypodinae) and 14 genera. Results: The Orthocladiinae subfamily presented the highest abundance (58,8%), followed by Chironominae (37,8%) and Tanypodinae (3,33%). La Victoria station (900 m) presented the highest number of individuals (708) and the highest number of genera (12), while La Cascada station (1,700 masl) showed the lowest abundances (221 individuals) and the lowest gender richness (8). The genera with the highest abundance were Cricotopus, Onconeura, Parametrionecmus, and Polypedilum, while Chironomus, cf. Manoa, and Riethia showed lower abundances in the study. Scope: We describe for the first time the occurrence of 14 genera in Northern Colombia. Conclusions: The results of this research contribute to the recognition of the diversity of chironomids in the department of Magdalena and provide additional evidence to state that the Sierra Nevada de Santa Marta is an important reservoir of biodiversity that has been little explored.

Acosta, R., y Prat, N. (2010). Chironomid assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology, 177(1), 57-79. https://doi.org/10.1127/1863-9135/2010/0177-0057

Amorim, D. D. S. (2009). Neotropical Diptera diversity: richness, patterns, and perspectives. En T. Pape, D. Bickel y R. Meier (Eds.), Diptera diversity: status, challenges and tools (Koninklijke Brill NV).

Andersen, T., Ekrem, T., y Cranston, P. S. (2013). The larvae of the Chironomidae (Diptera) of the Holarctic Region–Introduction. En Series: Insect Systematics and Evolution Supplements (formerly Entomologica Scandinavica Supplement),66, 7-12).

Armitage, P. D., Moss, D., Wright, J. F., y Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17(3), 333-347. https://doi.org/10.1016/0043-1354(83)90188-4

Ashe, P., Murray, D. A., y Reiss, F. (1987). The zoogeographical distribution of Chironomidae (Insecta : Diptera). Annales de Limnologie, 23(1). https://doi.org/10.1051/limn/1987002

Barragán, M. F., Tamaris-Turizo, C. E. y Rua, G. A. (2017). Comunidades de insectos acuáticos de los tres flancos de la Sierra Nevada de Santa Marta, Colombia. Biota Colombiana, 17(2), 47-61. https://doi.org/10.21068/c2016.v17n02a05

Brown, B. V., Borkent, A., Cumming, J. M., Wood, D. M., Woodley, N. E., y Zumbado, M. A. (2009). Manual of Central American Diptera (NRC Research Press, Vol. 2).

Courtney, G. W., y Cranston, P. S. (2015). Order Diptera. Thorp and Covich’s Freshwater Invertebrates: Ecology and General Biology: Fourth Edition, 4, 1043-1058. https://doi.org/10.1016/B978-0-12-385026-3.00040-1

Cranston, P. S. (1995). Introduction. En P. Armitage, P. S. Cranston, y L. C. V. Pinder (Eds.), The chironomidae—the biology and ecology of non-biting midges (pp. 1-7). Chapman & Hall.

Epler, J. H. (2001). Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. North Carolina Department of Environment and Natural Resources.

Espinal, L. S. y Montenegro, E. (1963). Formaciones vegetales de Colombia: memoria explicativa sobre el mapa ecológico: Vol. No. QH541 E8 (IGAC, Ed.).

Ferrington, L. C. (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia, 595(1), 447. https://doi.org/10.1007/s10750-007-9130-1

Frissell, C. A., Liss, W. J., Warren, C. E., y Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management 1986 10:2, 10(2), 199-214. https://doi.org/10.1007/BF01867358

González-Trujillo, J. D., Donato-Rondon, J. C., Muñoz, I., y Sabater, S. (2020). Historical processes constrain metacommunity structure by shaping different pools of invertebrate taxa within the Orinoco basin. Diversity and Distributions, 26(1). https://doi.org/10.1111/ddi.12996

Heiri, O. (2013). The Larvae of Chironomidae of the Holarctic Region – Keys and diagnoses. CHIRONOMUS Journal of Chironomidae Research, 0(26). https://doi.org/10.5324/cjcr.v0i26.1656

Henriques-Oliveira, A. L., Nessimian, J. L., y Dorvillé, L. F. (2003). Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology, 63(2). https://doi.org/10.1590/S1519-69842003000200012

Hoyos, D. y Días, L. (2020). Contribución taxonómica a la subfamilia Chironominae de Caldas: nuevos registros, clave taxonómica y diagnosis. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 507-521. https://doi.org/10.18257/RACCEFYN.1184

Hsieh, T. C., Ma, K. H., y Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456. https://doi.org/10.1111/2041-210X.12613

Jacobsen, D. (2003). Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv fur Hydrobiologie, 158(2). https://doi.org/10.1127/0003-9136/2003/0158-0145

Jacobsen, D. (2008). Tropical high-altitude streams. En Tropical Stream Ecology. https://doi.org/10.1016/B978-012088449-0.50010-8

Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375. https://doi.org/10.1111/J.2006.0030-1299.14714.X

Laurindo da Silva, F., Pinho, L. C., Wiedenbrug, S., Dantas, G. P. S., Siri, A., Andersen, T., y Trivinho-Strixino, S. (2018). Family Chironomidae. Thorp and Covich’s Freshwater Invertebrates, 661-700. https://doi.org/10.1016/B978-0-12-804223-6.00031-7

Medina, A. y Paggi, A. (2004). Composición y abundancia de Chironomidae (Diptera) en un río serrano de zona semiárida (San Luis, Argentina). Rev. Soc. Entomológica Argentina, 63(3-4).

Montaño-Campaz, M. L., Gomes-Dias, L., Toro Restrepo, B. E., y García-Merchán, V. H. (2019). Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination. PLOS ONE, 14(1), e0210348. https://doi.org/10.1371/journal.pone.0210348

Moreno, J. L. R., Torres, R. O., y Riss, W. (2000). Guía para la identificación genérica de larvas de quironómidos (Diptera: Chironomidae) de La Sabana de Bogotá. II subfamilia Chirominae. Caldasia, 22(1), 15-33. https://revistas.unal.edu.co/index.php/cal/article/view/17549

Ospina, R., Riss, H. W. y Ruiz, L. J. (1999). Guía para la identificación genérica de larvas de quironómidos (Diptera: Chironomidae: Orthocladiinae) de la Sabana de Bogotá. En G. Amat (Ed.), Insectos de Colombia (Unal, Vol. 2, pp. 363-384).

Oviedo-Machado, N. y Reinoso-Flórez, G. (2018). Aspectos ecológicos de larvas de Chironomidae (Diptera) del río Opia (Tolima, Colombia). Revista Colombiana de Entomología, 44(1), 101. https://doi.org/10.25100/socolen.v44i1.6546

Paggi, A. (2001). Diptera: Chironomidae. En H. Fernández y E. Domínguez (Eds.), Guía para la determinación de los artrópodos bentónicos sudamericanos (pp. 167-193). Universidad Nacional de Tucumán.

Pero, E. J. I., Torrejón, S. E., y Molineri, C. (2023). Influence of ecoregion and river type on neotropical Chironomidae (Diptera) from humid mountain to semiarid lowland. Revista de Biología Tropical, 71(1):1-14. https://revistas.ucr.ac.cr/index.php/rbt/issue/view/3271

Prat, N., González-Trujillo, J. D., y Ospina-Torres, R. (2014). Clave para la determinación de exuvias pupales de los quironómidos (Diptera: Chironomidae) de ríos altoandinos tropicales. Revista de Biología Tropical, 62(4), 1385-1406. https://bit.ly/450Z0S7

Prat, N. y Rieradevall, M. (2011). Guía para el reconocimiento de las larvas de Chironomidae (Diptera) de los ríos Altoandinos de Ecuador y Perú. Clave para la determinación de los géneros

Príncipe, R. E., Boccolini, M. F., y Corigliano, M. C. (2008). Structure and spatial-temporal dynamics of chironomidae fauna (Diptera) in upland and lowland fluvial habitats of the Chocancharava River basin (Argentina). International Review of Hydrobiology, 93(3). https://doi.org/10.1002/iroh.200710974

Príncipe, R. E., Raffaini, G. B., Gualdoni, C. M., Oberto, A. M., y Corigliano, M. C. (2007). Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica, 37(4). https://doi.org/10.1016/j.limno.2007.06.001

Puntí, T., Rieradevall., y Prat, N. (2009). Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of North American Benthological Society, 28(1): 247-266.

R Core Team. (2021). R core team (2021). En R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www. R-project. org.

Ramos-Pastrana, Y., Zambrano-Yepes, J., y Wolff, M. (2021). Altitudinal Distribution of Calliphoridae (Diptera: Insecta) on the Eastern Slope of the Eastern Mountain Range in the Andean Amazon, Colombia. Boletín Científico del Centro de Museos, 25(1). https://doi.org/10.17151/bccm.2021.25.1.6

Rojas-Sandino, L. D., Reinoso-Flórez, G., Vásquez-Ramos, J. M., Rojas-Sandino, L. D., Reinoso-Flórez, G. y Vásquez-Ramos, J.M. (2018). Distribución espacial y temporal de dípteros acuáticos (Insecta: Diptera) en la cuenca del río Alvarado, Tolima, Colombia. Biota Colombiana, 19(1), 70-91. https://doi.org/10.21068/C2018.V19N01A05

Saether, O. A. (2000). Phylogeny of the subfamilies of Chironomidae (Diptera). Systematic Entomology, 25(3), 393-403. https://doi.org/10.1046/j.1365-3113.2000.00111.x

Serra, S. R. Q., Graça, M. A. S., Dolédec, S., y Feio, M. J. (2017). Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environmental Monitoring and Assessment, 189(7), 1-16. https://doi.org/10.1007/S10661-017-6027-Y/FIGURES/6

Tamaris-Turizo, C., Rodríguez-Barrios, J., y Ospina-Torres, R. (2013). Aquatic Macroinvertebrates drift along of the Gaira River, northwestern side of the Sierra Nevada de Santa Marta, Colombia. Caldasia, 35(1).

Tejerina, E. y Molineri, C. (2007). Comunidades de Chironomidae (Diptera) en arroyos de montaña del NOA: comparación entre Yungas y Monte. Rev. Soc. Entomológica Argentina, 66.

Trivinho-Strixino, S. (2011). Larvas de Chironomidae. Guia de identificação. São Carlos, Depto. Hidrobiologia/Lab. Entomologia. Aquática/UFSCar.

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., y Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1). https://doi.org/10.1139/f80-017

Villamarín, C. P. (2012). Estructura y composición de las comunidades de macroinvertebrados acuáticos en ríos altoandinos del Ecuador y Perú. Diseño de un sistema de medida de la calidad del agua con índices multimétricos. http://diposit.ub.edu/dspace/handle/2445/35325

Zúñiga, M. del C., y Cardona, W. (2009). Bioindicadores de calidad de agua y caudal ambiental. En J. Cantera, Y. Carvajal, y L. Castro (Eds.), Caudal ambiental: Conceptos Experiencias y Desafíos. (pp. 167-198). Programa Editorial de la Universidad del Valle, Colección Libros de Investigación.
Sistema OJS - Metabiblioteca |