DOI: 10.17151/bccm.2020.24.1.2
How to Cite
Buitrago Bitar, M. A. ., Enríquez Valencia, A. L. ., Londoño Caicedo, . J. M. ., Muñoz Flórez, . J. E. ., Villegas Estrada, . B. ., & Santana Fonseca, G. E. (2020). Molecular and morphological characterization of Musa spp. (Zingiberales : Musaceae) cultivars. Boletín Científico. Centro De Museos, 24(1), 33–47. https://doi.org/10.17151/bccm.2020.24.1.2

Authors

María Angélica Buitrago Bitar
Universidad Nacional de Colombia
mabuitragob@unal.edu.co
https://orcid.org/0000-0003-3080-0669
Ayda Lilia Enríquez Valencia
Universidad Nacional de Colombia
alenriquezv@unal.edu.co
https://orcid.org/0000-0003-1802-9613
Jorge Mario Londoño Caicedo
Universidad Nacional de Colombia
jomlondonoca@unal.edu.co
https://orcid.org/0000-0001-9349-9725
Jaime Eduardo Muñoz Flórez
Universidad Nacional de Colombia
jemunozf@unal.edu.co
https://orcid.org/0000-0002-8237-0499
Bernardo Villegas Estrada
Universidad de Caldas
bernardo.villegas@ucaldas.edu.co
https://orcid.org/0000-0003-4441-5278
Gloria Esperanza Santana Fonseca
Universidad de Caldas
gloria.santana@ucaldas.edu.co
https://orcid.org/0000-0001-6467-3261

Abstract

Objectives: The overall goal was to analyze genetic diversity in cultivars of Musa acuminata (Colla) and M. balbisiana (Colla), commonly grown in farms from Caldas department. Scope: Characterization of the genetic variability, at the molecular and morphological level of cultivars of M. acuminata and M. balbisiana, found in farms from Caldas farmers using morphological descriptors and fluorescent microsatellites. Methodology: Phenotyping evaluations comprised 57 morphological characters following the descriptors proposed by IPGRI for the Musa genus, and for genotyping evaluations, nine fluorescent microsatellites (Simple Sequence Repeats-SSR) were used to allow the precise identification of alleles. Additionally, cluster analyses were carried out independently for both morphological and genotypic characterizations under Principal Component Analysis (PCA) and Bootstrapping methods respectively. Main results: Positive and negative highly significant correlations were found for the morphological descriptors, where traits such as presence/ absence of male bud was the rule, as well as the diameter and perimeter of this trait, plus the diameter and perimeter of the peduncle, number of fruits, pseudostem height and fruit length contributed considerably to the variability among the cultivars allowing the discrimination of three main groups in the cluster analyzes. From the molecular perspective a total of 72 polymorphic alleles were obtained, with an average genetic diversity of 0,79, polymorphic information content (PIC) of 0,77 and heterozygosity of 0,48, showed a moderate degree of genetic differentiation (FST = 0,061) among Musa cultivars, generating three main sub-clusters based on their genetic dissimilarity. Conclusions: The identification of certain morphological traits showed to be suitable for the discrimination of Musa cultivars evaluated here. On the other hand, molecular characterization allowed to establish the genetic relationships among groups, also fluorescent SSR were highly informative and accurate, in such a way that can be considered suitable for characterizations in Musa varieties.

Addinsoft. (1993). Xlstat. Statistical Analysis in Excell. Addinsoft free trial version. All rights reserved. Berkley California.

Agronet. (2017). Evaluaciones Agropecuarias Municipales. Gobierno Nacional De Colombia, 4.

Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers. In African Journal of Biotechnology (Vol. 11). https://doi.org/10.5897/AJB10.1319

Batte, M., Mukiibi, A., Swennen, R., Uwimana, B., Pocasangre, L., Hovmalm, H. P., … & Ortiz, R. (2018). Suitability of existing Musa morphological descriptors to characterize East African highland ‘matooke’ bananas. Genetic Resources and Crop Evolution, 65(2), 645–657. https://doi.org/10.1007/s10722-017-0562-9

Blacket, M., Robin, C., Good, R., Lee, S., & Miller, A. (2012). Universal primers for fluorescent labelling of PCR fragments-an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources, 12(3), 456–463: https://doi.org/10.1111/j.1755-0998.2011.03104.x

Blair, M., Díaz, L., Buendía, H., & Duque, M. (2009). Genetic diversity , seed size associations and population structure of a core collection of common beans ( Phaseolus vulgaris L .). Theoretical and Applied Genetics, 119(6): 955–972. https://doi.org/10.1007/s00122-009-1064-8

Brandão, L., Souza, C., Pereira, V., Silva, S., Santos-Serejo, J., Ledo, C., & Amorim, E. (2013). Descriptor selection for banana accessions based on univariate and multivariate analysis. Genetics and Molecular Research, 12(2): 1603–1620. https://doi.org/10.4238/2013.May.14.1

Brown, A., Tumuhimbise, R., Amah, D., Uwimana, B., Nyine, M., Mduma, H., … Swennen, And R. (2017). Bananas and Plantains (Musa spp.) (in) H. Campos & P. D. S. Caligari (Eds.), Genetic Improvement of Tropical Crops (1st ed., pp. 219–240). https://doi.org/10.1007/978-3-319-59819-2

Buhariwalla, H., Jarret, R., Jayashree, B., Crouch, J., & Ortiz, R. (2005). Isolation and characterization of microsatellite markers from Musa balbisiana. Molecular Ecology Notes, 5(2): 327–330. https://doi.org/10.1111/j.1471-8286.2005.00916.x

Chapuis, M.-P & Estoup, A. (2007). Microsatellite Null Alleles and Estimation of Population Differentiation. Mol. Biol. Evol., 24(3), 621–631: https://doi.org/10.1093/molbev/msl191

Christelová, P., De Langhe, E., Hřibová, E., ČÍžková, J., Sardos, J., Hušáková, M., … Doležel, J. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 26(4): 801–824. https://doi.org/10.1007/s10531-016-1273-9

Colson, I., & Goldstein, D. B. (1999). Evidence for complex mutations at microsatellite loci in Drosophila. . Genetics, 152(2): 617–627.

Creste, S., Benatti, T., Orsi, M., Risterucci, A., & Figueira, A. (2006). Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata. Molecular Ecology Notes, 6(2), 303–30:. https://doi.org/10.1111/j.1471-8286.2005.01209.x

D’hont, A., Denoeud, F., Aury, J. M., Baurens, F. C., Carreel, F., Garsmeur, O., … & Wincker, P. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410): 213–217. https://doi.org/10.1038/nature11241

Daniells, J., Jenny, C., Karamura, D., & Tomekpe, K. (2001). Musalogue: A Catalogue of Musa Germplasm, Diversity in the Genus Musa. INIBAP, Montpellier, France.

De Langhe, E., Hřibová, E., Carpentier, S., Dolezel, J., & Swennen, R. (2010). Did backcrossing contribute to the origin of hybrid edible bananas? Annals of Botany, 106(6): 849–857. https://doi.org/10.1093/aob/mcq187

Doyle, J. (1991). DNA Protocols for Plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series (Series H: Cell Biology), 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83962-7_18

Estoup, A., Jarne, P., & Cornuet, J. M. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology. 11(9): 1591–1604. https://doi.org/10.1046/j.1365-294X.2002.01576.x

Franco, T. L., & Hidalgo, R. (2003). Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos (in) Boletin Técnico. no. 8, Instituto Internacional de Recursos Fitogenéticos (IPGRI).

Geronimo, F., Ibarra, Q., Navia, M., & Aguirre, G. (2013). Caracterizacion morfologica de platano (Musa paradisiaca L.) en la provincia nor Yungas de la Paz y Provincia Chapare de Cochabamba Bolivia. Agrociencias Amazonia, 1(2), 35–41.

Hippolyte, I., Jenny, C., Gardes, L., Bakry, F., Rivallan, R., Pomies, V., … & Perrier, X. (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 109(5): 937–951. https://doi.org/10.1093/aob/mcs010

IPGRI. (1996). Descriptors for banana (Musa spp.). International Network for the Improvement of Banana and Plantain (INIBAP)

López, J., & Hidalgo, M. D. (1994). Análisis de componentes principales y análisis factorial. In Fundamentos de estadística con Systat (21): 457–503).

Perrier, X., Flori, A., & Bonnot, F. (2003). Data analysis methods in Genetic diversity of cultivated tropical plants. 43-76. Enfield, Science Publishers. Plymouth, UK.

Piña, G., Laborem, G., Surga, J., Marín, C., Rangel, L., Espinoza, M., & Delgado, A. (2006). Atributos de calidad en frutos de híbridos FHIA ( Musa ) para tres ciclos de cosecha. Rev. Fac. Agron. (LUZ). 23(1): 425–442.

R core team (2008). R: A Language and Environment for Statistical. R: A Language and Environment for Statistical Computing, Vienna, Austria. Retrieved from https://www.r-project.org/

Rouard, M., Droc, G., Martin, G., Sardos, J., Hueber, Y., Guignon, V., … & Roux, N. (2018). Three new genome assemblies support a rapid radiation in Musa acuminata (Wild Banana). Genome Biology and Evolution, 10(12): 3129–3140. https://doi.org/10.1093/gbe/evy227

Simmonds, N., & Shepherd, B. (1955). The taxonomy and origins of the cultivated bananas. Botanical Journal of the Linnean Society, 55(359): 302–312. https://doi.org/10.1111/j.1095-8339.1955.tb00015.x

Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3): 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

Wang, Z., Miao, H., Liu, J., Xu, B., Yao, X., Xu, C., … & Jin, Z. (2019). Musa balbisiana genome reveals subgenome evolution and functional divergence. Nat. Plants, 5(8): 810–821. https://doi.org/10.1038/s41477-019-0452-6

Wright, S. (1978). Variability Within and Among Natural Populations: 157 (in) Evolution and the genetics of populations (4). University of Chicago Press, Chicago.

Xu, J., Liu, L., Xu, Y., Chen, C., Rong, T., Ali, F., …& Lu, Y. (2013). Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Research, 20(5): 497–509. https://doi.org/10.1093/dnares/dst026
Sistema OJS - Metabiblioteca |