DOI: 10.17151/bccm.2024.28.2.1
How to Cite
Rodriguez-Roa, A. O., Estupiñan Casallas, J. M., Jaramillo Barrios, C. I., Monje Andrade, B., & Abaunza González, C. A. (2024). Environmental and geophysical variables as indicators of the potential distribution of Dalbulus maidis (Hemiptera: Cicadellidae) in Huila, Colombia. Boletín Científico. Centro De Museos, 28(2), 13–31. https://doi.org/10.17151/bccm.2024.28.2.1

Authors

Andrea Onelia Rodriguez-Roa
Corporación Colombiana de Investigación Agropecuaria Agrosavia
arodriguezr@agrosavia.co
https://orcid.org/0000-0001-9279-3607
Perfil Google Scholar
Jhon Mauricio Estupiñan Casallas
Corporación Colombiana de Investigación Agropecuaria Agrosavia
jmestupinan@agrosavia.co
https://orcid.org/0000-0002-8782-7291
Perfil Google Scholar
Camilo Ignacio Jaramillo Barrios
Corporación Colombiana de Investigación Agropecuaria Agrosavia
cijaramillo@agrosavia.co
https://orcid.org/0000-0002-8302-2736
Perfil Google Scholar
Buenaventura Monje Andrade
Corporación Colombiana de Investigación Agropecuaria Agrosavia
bmonje@agrosavia.co
https://orcid.org/0000-0002-8177-4651
Perfil Google Scholar
Carlos Alberto Abaunza González
Corporación Colombiana de Investigación Agropecuaria Agrosavia
cabaunza@agrosavia.co
https://orcid.org/0000-0003-4496-1455
Perfil Google Scholar

Abstract

Dalbulus maidis is a pest of great importance for corn in America and Colombia, due to its potential for transmitting pathogens that cause plant diseases and result in large crop losses. Environmental conditions are considered among the main factors in the geographic distribution of pests. Objective: To identify the climatic and geophysical elements that affect the presence of D. maidis and its potential geographic distribution in Huila (Colombia) using the MaxEnt algorithm in order to determine the risk of presence of this species in the area. Scope: to provide elements to phytosanitary and environmental authorities, researchers and agricultural extensionist agents in management strategies for this pest in corn-producing regions. Methodology: A Total of 29 environmental variables were considered. Sixty-three models were fitted and evaluated using goodness-of-fit metric and the area under curve (AUC) adjustment, and the contribution of the variables was evaluated using the jackknife analysis. Main results: The resulting habitat suitability model was fitted with an AUC value of 0.82, being the topographic diversity index, the annual average temperature, reference evapotranspiration, precipitation of the driest month, annual precipitation, and wind speed the most important variables for predicting habitat suitability of D.maidis. Conclusion:, 62.49 % of the study area was classified as high and medium-high habitat suitability, 29.98 % as medium, and only 7.53 % as low and medium-low.

Alves, A. P., Parody, B., Barbosa, C. M., de Oliveira, C. M., Sachs, C., Sabato, E. D. O., Gava F., D., Oliveira I. R., Foresti, J., Cota, L.V., Campante, P., Garollo, P.R., Palatnik, P., & Araujo, R. M. (2020). Guia de boas práticas para o manejo dos enfezamentos e da cigarrinha-do-milho. Croplife Brasil and Embrapa, São Paulo/SP and Brasília/DF, Brazil

Bedendo, I. P., & Lopes, J. R. S. (2019). Impact and management of major phytoplasma diseases in Brazil. Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt: Biology and Detection, 251-268.

Cobos, M.E., Jiménez, L., Nuñez-Penichet, C., Romero-Alvarez, D., & Simoes, M. (2018). Sample data and training modules for cleaning biodiversity information. Biodiversity Informatics (13): 49–50. https://doi.org/10.17161/bi.v13i0.7600

De Oliveira, C.M., Lopes, J.R.S., Camargo, L.E.A., Fungaro, M.H.P., & Nault, L.R. (2014). Genetic diversity in populations of Dalbulus maidis (DeLong and Wolcott) (Hemiptera: Cicadellidae) from distant localities in Brazil assessed by RAPD-PCR markers. Environmental entomology, 36(1), 204-212. https://doi.org/10.1603/0046-225X(2007)36[204:GDIPOD]2.0.CO;2

Dietzgen, R.G., Mann, K.S., & Johnson, K.N. (2016). Plant virus–insect vector interactions: Current and potential future research directions. Viruses, 8(11): 303. https://doi.org/10.3390/v8110303

ESRI, (2022). Sentinel-2 10m Land Use/Land Cover Time Series (Mature Support) - Información general. https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31

Foresti, J., Pereira, R., Santana, P., das Neves, T., da Silva, P., Rosseto, J., Novais, A., Ishizuka, T., Harter, W., Schwertner, M. & Picanço, M. (2022). Spatial–temporal distribution of Dalbulus maidis (Hemiptera: Cicadellidae) and factors affecting its abundance in Brazil corn. Pest Management Science, 78(6), 2196–2203. https://doi.org/10.1002/ps.6842

Garcia da Cunha, T., Veloso, R.V.D.S., de Araújo, M.M.M., Tavares, L.G., Ribeiro, L.F.B., Tormen, G.P., Santos, D., Coutinho, M., Lopes, E., Ramos, R., Alvarenga, M., da Silva, R., & Silva, R.S.D. (2023). Distribution of Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae) and incidence of maize rayado fino virus and Candidatus Phytoplasma asteris in corn succession planting systems. Pest Management Science, 79(7), 2325-2337. https://doi.org/10.1002/ps.7408

González, J. (2019). Los productores de Tolima trabajan para evitar enfermedades en el cultivo del maíz. Agronegocios. Recuperado el 18 de enero de 2023, de https://www.agronegocios.co/agricultura/los-productores-de-tolima-trabajan-para-evitarenfermedades-en-el-cultivo-del-maiz-2819816.

Gorelick, N., Hancher, M. & Dixon, M. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/J.RSE.2017.06.031

Guijarro, M.J.A. (2022). Package ‘climatol’. In: https://cran.r-project.org/web/packages/climatol/climatol.pdf

Gutierrez, A.P., Ponti, L., Hoddle, M., Almeida, R.P. & Irvin, N.A. (2011). Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids. Environmental Entomology, (40): 755–769.https://doi.org/10.1603/EN10174

Heiberger, R. M. & Holland, B. (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second
Edition. Springer-Verlag, New York. 898 pp.

IDEAM, (2022). Consulta y Descarga de Datos Hidrometeorológicos. In: Consulta y Descarga Datos Hidrometeorol. https://dhime.ideam.gov.co/atencionciudadano/. Accessed 30 Mar 2022.

IDEAM & UPRA. (2022). Metodología: Cálculo de la Evapotranspiración para Colombia. https://storymaps.arcgis.com/stories/5a10de47cd1647078f37800b867e1523. Accessed 30 Jun 2022.

Instituto Colombiano Agropecuario-ICA. (2016). El ICA diseñó plan de trabajo para apoyar a maiceros del Huila. Noticias ICA. https://www.ica.gov.co/movil/noticias/4902.aspx

Instituto Colombiano Agropecuario-ICA. (2023). El ICA determina fechas para siembra de cultivos de maíz y sorgo en el Huila. Noticias ICA. https://www.ica.gov.co/noticias/ica-determina-fechas-siembra-cultivos-maiz-sorgo#:~:text=la%20Resoluci%C3%B3n%20No.-,No.,15%20de%20abril%20del%202023.

Instituto Colombiano Agropecuario-ICA. (2021). Muestreos ICA [Correo electrónico]. Jarnevich, C.S., Stohlgren, T.J. & Kumar S (2015). Caveats for correlative species distribution modeling. Ecological informatics, (29):6–15. https://doi.org/10.1016/J.ECOINF.2015.06.007

Jarvis, A., Reuter, A. & Nelson E.G. (2008). CGIAR-CSI SRTM – SRTM 90m DEM Base de datos de elevación digital. In: Hole-filled SRTM globe Version 4, available from CGIAR-CSI SRTM 90m. https://srtm.csi.cgiar.org/.

Jurga, M., & Zwolińska, A. (2020). Phytoplasmas in Poaceae species: a threat to the most important cereal crops in Europe. Journal of Plant Pathology, 102, 287-297. https://doi.org/10.1007/s42161-019-00481-6

Knight, W.J. & Webb, M.D. (1993). The phylogenetic relationships between virus vector and other genera of macrosteline leafhoppers, including descriptions of new taxa (Homoptera: Cicadellidae: Deltocephalinae). Systematic Entomology, 18(1), 11–55. https://doi.org/10.1111/j.1365-3113.1993.tb00653.x

Kumar, S., Graham, J., West, A. M., & Evangelista, P. H. (2014). Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture, 103, 55-62. https://doi.org/10.1016/j.compag.2014.02.007

Liebhold, A.M., Yamanaka, T., Roques, A., Augustin, S., Chown, S.L., Brockerhoff, E.G., & Pyšek, P. (2018). Plant diversity drives global patterns of insect invasions. Scientific Reports, 8(1), 12095. https://doi.org/10.1038/s41598-018-30605-4

Merow, C., Smith, M,J, & Silander, J.A. (2013). A practical guide to MaxEnt for modeling species distributions: What it does, and why inputs and settings matter. Ecography, 36(10): 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

MADR (Ministerio de Agricultura y Desarrollo Rural). (2021). Agronet. Área, Producción y Rendimiento Nacional por Cultivo. Recuperado de: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Oliveira, C.M.D., & Frizzas, M.R. (2022). Eight decades of Dalbulus maidis (DeLong & Wolcott) (Hemiptera, Cicadellidae) in Brazil: what we know and what we need to know. Neotropical Entomology, 51(1), 1-17. http://doi.org/10.1007/s13744-021-00932-9

Phillips, S.J., Dudík, M. & Schapire, R.E. (2017). Maxent software for modeling species niches and distributions (Version 3.4.1)

R Core Team. (2021). R: A language and environment for statistical computing.

Romero Fernández, M. (2020). Análisis de distribución potencial de Xylella fastidiosa subsp. multiplex ST-6 y Philaenus spumarius en el sur de la Península Ibérica mediante el modelo ecológico de nicho MaxEnt. GeoFocus, (25): 77-102. http://doi.org/10.21138/GF.664

Ruiz de Larramendi, M. (2017). Diseño de metodología y desarrollo de recursos para la modelización de Especies Exóticas Invasoras; análisis de su aplicabilidad en el caso de Vespa velutina (tesis de maestría). Universidad Pública de Navarra, Navarra, España. 88 p.

Sánchez-Reinoso, I., Jaramillo-Barrios, C.I., Monje-Andrade, B., Ramírez-Godoy, A., & Vargas Berdugo, A.M. (2021). Morphological variations and abundance of populations of the leafhopper Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae) from the cornproducing region of Huila, Colombia. Agronomía Colombiana, 39(3): 343-354. https://doi.org/10.15446/agron.colomb.v39n3.96432

Sánchez-Reinoso, I. Caracterización poblacional de Dalbulus sp. (Hemiptera: Cicadellidae) vector de fitoplasmas y espiroplasmas en el departamento del Huila. 108 p. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repository.agrosavia.co/bitstream/handle/20.500.12324/36712/Ver_documento__36712.pdf?sequence=1

Santana, P.A., Kumar, L. & Da Silva, R.S. (2019). Assessing the impact of climate change on the worldwide distribution of Dalbulus
maidis (DeLong) using MaxEnt. Pest Management Science, 75: 2706–2715. https://doi.org/10.1002/PS.5379

Santana Robles, F., Granillo Macías, R., Espinoza Sánchez, F.I., Aguilar Ortega, J.C. & Ortega Zavala, J.G. (2018). Caracterización de la cadena de valor del maíz. Ingenio y Conciencia Boletín Científico De La Escuela Superior Ciudad Sahagún, 5(9): 1-15. https://
doi.org/10.29057/ess.v5i9.2899

Simões, M., Romero-Alvarez, D., Nuñez-Penichet, C., Jiménez, L. & Cobos, M. (2020). General theory and good practices in ecological niche modeling: a basic guide. Biodiversity Informatics, 15 (2):67–68. https://doi.org/10.17161/bi.v15i2.13376

Ruíz, J.F., Serna, J. & Zapata, H. (2017). Atlas de viento de Colombia. Bogotá

Theobald, D.M., Harrison-Atlas, D., Monahan, W.B., & Albano, C.M. (2015). Ecologically - relevant maps of landforms and physiographic diversity for climate adaptation planning. PloS one, 10(12): e0143619. https://doi.org/10.1371/journal.pone.0143619

Torres-Moreno, R., & Moya-Raygoza, G. (2021). Diversity and parasitism by parasitic wasps that attack Dalbulus maidis (Hemiptera: Cicadellidae) on year-round and seasonal maize agroecosystems. Environmental Entomology 50(5), 1088-1094. https://doi.
org/10.1093/ee/nvab070

Trethowan, P.D., Robertson, M.P., & McConnachie, A.J. (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. South African Journal of Botany, 77:137–146. https://doi.org/10.1016/J.SAJB.2010.07.007

Triplehorn, B.W., & Nault, L.R. (1985). Phylogenetic classification of the genus Dalbulus (Homoptera: Cicadellidae), and notes on the phylogeny of the Macrostelini. Annals of the Entomological Society of America, 78(3), 291–315. https://doi.org/10.1093/aesa/78.3.291

Triplehorn, C.A., & Johnson, N.F. (2005) Borror and DeLong’s introduction to the study of insects (7th ed.). Thompson Brooks/Cole.

Van Nieuwenhove, G.A., Frías, E.A., & Virla, E.G. (2016). Effects of temperature on the development, performance and fitness of the corn leafhopper Dalbulus maidis (DeLong) (Hemiptera: Cicadellidae): Implications on its distribution under climate change. Agricultural and Forest Entomology, 18:1–10. https://doi.org/10.1111/afe.12118

Varón, F., & Sarria, G.. (2007). Enfermedades del maíz y su manejo: compendio ilustrado. Instituto Colombiano Agropecuario-ICA, Palmira, Colombia. 57 p.

Virla, E.G., Paradell, S., & Diez, P. (2003). Estudios bioecológicos sobre la chicharrita del maíz Dalbulus maidis (Insecta-Cicadellidae) en Tucumán (Argentina). Boletín de sanidad vegetal. Plagas 29, 17-25.

Wang, X.G., Johnson, M.W., Daane, K.M., & Nadel, H. (2009). High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environmental Entomology (38): 1496–1504. https://10.1603/022.038.0518
Sistema OJS - Metabiblioteca |