How to Cite
Jiménez Cortes, A. . (2019). Molecular biology of cancer : similarities between humans and animals. Revista Veterinaria Y Zootecnia (On Line), 13(2), 81–95. Retrieved from https://revistasojs.ucaldas.edu.co/index.php/vetzootec/article/view/350

Authors

Alejandro Jiménez Cortes
Fundación Universitaria Autónoma de las Américas
aljicomvz@hotmail.com
https://orcid.org/0000-0002-5531-4774

Abstract

Introduction: Cancer is a very important disease especially in older dogs and cats, affecting all breeds with high levels of mortality. In addition, the study of cancer in domestic animals allows progress in the knowledge of human cancer, because they have similarities in several aspects. The most important are related to the clinical part, drug resistance and risk factors for its development. This will expand knowledge in cancer biology, improve palliative treatments and improve the effectiveness of healing attempts. To achieve this, those that resemble the phenotype and molecular aspects should be used, but additionally be identical in the growth pattern, location and immune status of the individual. In this sense it is important both the emulation of genetic alterations, clinical characteristics and variations of the disease due to the biological diversity of cancer. Aims: To analyze the participation of the C-MYC oncogene during cancer, and of the genes P53, MDR-1 and Ki-67 as factors for the development of human cancer and its similarities with Canine Transmissible Venereal Tumor (TVTc).Methods: Theoretical review of 52 bibliographic sources of the search engines Pubmed, Scopus and Google scholar was carried out. Results: Mammalian tumors are the result of alterations in cell proliferation and differentiation genes, inhibition of tumor suppressors, repair gene failures, apoptosis and methylation mechanisms. The protooncogen C-MYC, promotes cell growth and immediate early response, but its expression is well controlled by a series of regulatory mechanisms. It is expressed in different tissues, altering cell differentiation and immortalization and expressing itself in those of greater proliferation. In addition, it is the target of estrogenic action in hormonal receptors due to sensitivity to these hormones during the cell cycle. There are molecular aspects of the C-MYC gene that indicate how it acts during Canine Transmissible Venereal Tumor (TVTc). In the DNA of mammals there are the LINEs that are inserted into the C-MYC gene, causing normal cells to become neoplastic. Canine Transmissible Venereal Tumor (TVTc) is a contagious neoplasm of dogs with two forms, genital and extra genital. The susceptible individual differs from the immune one by its inherent ability to resist contagion, so it is necessary to understand how the immune system is acting and its impact on the final outcome of patients with TVTc. In order for a tumor to become transmissible, cells must undergo adaptive processes to colonize the host. Inactivity of the p16 tumor suppressor gene is associated with human cancers and is a step for tumorigenesis and disruption of the regulation of this gene leads to a malignant transformation. Resistances may be inherent in the tumor strain itself and may appear during illness. When prolonged application of a drug induces overexpression of Pglycoprotein, cross-resistance with other unrelated drugs often appears, making the cell multidrug. The Ki-67 protein is present during all active phases of the cell cycle, but is absent in stationary cells, therefore, its role as a proliferation antigen is virtually restricted. Increased tissue expression and the correlation between the C-MYC, P53, P21 and P27 proteins indicate reduction and / or loss of their functionality in the micro-environment of the TVTc, whereby apoptotic suppression, maintenance of cell growth and progression is generated of the neoplasm. The gene sequencing technique has allowed us to discover the clonal origin of the specific cell lineage of the TVTc and expand the existing knowledge about neoplasms. Conclusions: The ability to determine the presence or absence of genes in the TVTc and its molecular expression, increases both the opportunity to understand the biology of cancer, and to understand from the relationship between the neoplasms of the different species to the common mechanisms between them to develop a competent response from the immune system. This response should be able to control cell proliferation. With this knowledge, better strategies can be proposed to avoid resistance to chemotherapeutics and control the exposure of species to extrinsic factors that influence the presentation of cancer, especially in humans and pets.

Addissie, S., & Klingemann, H. (2018). Cellular Immunotherapy of Canine Cancer. Veterinary Sciences, 5, 100. doi:10.3390/vetsci5040100

Amariglio, E. N., Hakim, I., Brok-Simoni, F., Grossman , Z., Katzir, N., Harmelin , A., . . . Rechavi, G. (1991). Identity of rearranged LINE/c-MYC junction sequences specific for the canine transmissible venereal tumor. Medical Sciences Proceedings of the National Academy of Sciences of the United States of America, 88, 8136 - 8139. doi:10.1073/pnas.88.18.8136

Atherton, M. J., Morris, J. S., McDermott, M. R., & Lichty, B. D. (2016). Cancer immunology and canine malignant melanoma: A comparative. Veterinary Immunology and Immunopathology, 169, 15 - 26. doi:10.1016/j.vetimm.2015.11.003

Benson , M., Giella , J., Whang, I. S., Buttyan , R., Hensle, T. E., Karp, F., & Olsson, C. A. (1991). Flow Cytometric Determination of the Multidrug Resistant Phenotype in Transitional Cell Cancer of the Bladder: Implications and Applications. The Journal of Urology, 146(4), 982 - 987. doi:10.1016/s0022-5347(17)37981-8

Bronden , L., Flagstad, A., & Kristensen, A. (2007). Veterinary cancer registries in companion animal cancer: a review. Veterinary and Comparative Oncology, 5, 3, 133 - 144. doi:10.1111/j.1476-5829.2007.00126.x

Burgués Gasión, J. P., Pontones Moreno, J. L., Vera Donoso, C. D., Jiménez Cruz, J. F., & Ozonas Moragues, M. (2005). Mecanismos del ciclo celular y la apoptosis implicados en las resistencias a los fármacos de uso intravesical en el cáncer superficial de vejiga. Actas Urologicas Españolas, 29(9), 846 - 859. doi:10.1016/s0210-4806(05)73356-8

Carnell, A., & Goodman, J. (2003). The Long and short of it: Altered Methylation as a Precursor to Toxicity. Toxicological Sciences, 75(2), 229 - 235. doi:10.1093/toxsci/kfg138

Chen Z, R., Pettersson , U., Beard, C., Jackson-Grusby , L., & Jaenisch, R. (1998). DNA Hypomethylation leads to elevated mutation rates. Nature, 395, 89 - 93. doi:10.1038/25779

Choi, Y.-K., & Kim, C.-J. (2002). Sequence Analysis of Canine LINE-1 Elements and p53 Gene in Canine Transmissible Venereal Tumor. Journal of Veterinary Science, 3(4), 285 - 292.

Cohen, D. (1985). The canine transmisible venereal tumor: A unique result of tumor progression. Advances in Cancer Research, 43, 75 - 76. doi:10.1016/S0065-230X(08)60943-4

Cole, M., & McMahon , S. (1999). The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene., 2916 - 2924. doi:10.1038 /sj.onc.1202748

Crow, M. K. (2010). Long interspersed nuclear elements (LINE-1): Potential triggers of systemic autoinmmune disease. Autoinmmunity, 7 - 16. doi:10.3109/08916930903374865

Dang, C. V. (2012). Myc on the Path to cancer. NIH Public Access, 149(1), 22 - 35. doi:10.1016/j.cell.2012.03.003.

Das, U., & Kumar Das, A. (2000). Review of Canine Transmissible Venereal Sarcoma. Veterinary Research Communications(24), 545 - 556.

Eun Jung , K., Woo Chul , C., Dae Bum , K., Yeon-Ji , K., & Ji Min, L. (2016). Long interspersed nuclear element (LINE)-1 methylation level as a molecular marker of early gastric cancer. Digestive and Liver Disease, 48, 1093 - 1097. doi:10.1016/j.dld.2016.06.002

Finnegan , D. J. (2012). Retrotransposons. Current Biology, 22(11), 432 - 437. doi:10.1016/j.cub.2012.04.025.

García García, V., Gonzalez-Moles, M., & Bascones Martinez, A. (2005). Bases moleculares del cancer oral. Avances en Odontoestomatologia, 21(6), 287 - 295. Obtenido de http://scielo.isciii.es/pdf/odonto/v21n6/original1.pdf

Garden, O. A., Volk, S. W., Mason, N. J., & Perry, J. A. (2018). Companion animals in comparative oncology: One Medicine in action. The Veterinary Journal , 240, 6 - 13. doi:10.1016/j.tvjl.2018.08.008.

Gaspar, L. J., Ferrerira , I., Moleta Colodel, M., Seullner Brandao, C. V., & Roucha, N. (2010). Spontaneous canine transmissible venereal tumor: cell morphology and influence on P-glycoprotein expression. The Turkish Journal of Veterinary and Animal Sciences, 34(5), 447 - 454. doi:10.3906/vet-0911-198.

Genovese, I., Ilari, A., Assaraf , Y. G., & Colotti, G. (2017). Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resistance Updates, 32, 23 - 46. doi:10.1016/j.drup.2017.10.003.

Grandi, F., Roucha, N. S., & Cogliati, B. (29 de Febrero de 2016). Perfil fenotípico de potenciais células iniciadoras tumorais no tumor venereo transmissivel canino ex vivo. Perfil fenotípico de potenciais células iniciadoras tumorais no tumor venereo transmissivel canino ex vivo. Botucatu, Brasil: UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE MEDICINA. Obtenido de https://repositorio.unesp.br/bitstream/handle/11449/136206/grandi_f_dr_bot.pdf?sequence=3&isAllowed=y

Immunohistochemical characterization of canine transmissible venereal tumor. (1996). Veterinary Pathology American College of Veterinaary Pathologists, 33(3), 257 - 263. doi:10.1177/030098589603300301.

Kato, G. J., Lee, W. M., Chen, L., & Dang, C. V. (1991). Max: functional domains and interaction with C-Myc. Genes & development, 6, 81 - 92. doi:10.1101/gad.6.1.81.

Katzir, N., Rechavi, G., Cohen, J. B., Unger, T., Simoni , F., Segal, S., . . . Givol , D. (1985). "Retroposon" insertion into the cellular oncogene c-mnc in canine transmisible venereal tumor. Proceedings of the National Academy of Sciences of the United States of America, 82, 1054 - 1058. doi:10.1073/pnas.82.4.1054.

Kelekar, A., & Cole, M. D. (1987). Immortalization by c-myc, H-ras, and Ela Oncogenes Induces Differential Cellular Gene Expression and Growth Factor Responses. Molecular And Cellular Biology, 7(11), 3899 - 3807. doi:10.1128/mcb.7.11.3899

Kotake, Y., Naemura, M., Murasaki, C., Inoue, Y., & Okamoto, H. (2015). Transcriptional Regulation of the p16 Tumor Suppressor Gene. Anticancer Research, 35(8), 4397 - 4402. Obtenido de http://ar.iiarjournals.org/content/35/8/4397.full.pdf+html

Liao, K.-W., Lin, Z.-Y., Pao, H.-N., Kam, S.-Y., Wang, F.-I., & Chu, R.-M. (2003). Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. Journal of Veterinary Diagnosis Investigation, 15, 399 - 406. doi:10.1177/104063870301500501.


Lima, C., Faleiro, M., Rabelo, R., Vulcan, V., Rubini, M., Torres, F., & Moura, V. (2016). Insertion of the LINE-1 element in the C-MYC gene and immunoreactivity of CMYC, p53, p21 and p27 proteins in different morphological patterns of the canine TVT. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68(3), 658 - 666. doi:10.1590/1678-4162-8750.

Mukaratirwa , S. (2005). Prognostic and predictive markers in canine tumours: Rationale and Relevance. A review. Veterinary Quarterly, 27(2), 52 - 64. doi:10.1080/01652176.2005.9695186.

Mukaratirwa, S., & Gruys, E. (2003). Canine transmissible venereal tumour: Cytogenetic origin, immunophenotype, and immunobiology. A review. Veterinary Quarterly, 25(3), 101 - 111. doi:10.1080/01652176.2003.9695151.

Murchison, E. P., Wedge, D. C., Alexandrov, L. B., Fu, B., Martincorena , I., Ning, Z., . . . Stratton, M. R. (2014). Transmissible dog cancer genome reveals the origin and history of an ancient cell lineage. Science, 343(6169), 437 - 440. doi:10.1126/science.1247167.

Murgia , C., Pritchard, J. K., Kim, S. Y., Fassati, A., & Weiss, R. A. (2006). Clonal origin and evolution of a transmissible cancer. 126(3), 477 - 487. doi:10.1016/j.cell.2006.05.051.

Musgrove, E. A., Sergio, C. M., Loi, S., Inman, C. K., Anderson, L. R., Alles, C., . . . Sutherland, R. L. (2008). Identification of Functional Networks of Estrogen- and cMyc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer. PLoS ONE, 3(8). doi:10.1371/journal.pone.0002987

Ospina Perez, M., & Muñeton Peña, C. M. (2011). Alteraciones del gen C-Myc en la oncogenesis. IATREIA Revista Medica de la Universidad de Antioquia, 24(4), 389 - 401.

Ostrander, E. A., Davis, B. W., & Ostrander, G. K. (2016). Transmissible tumours: Breaking the cancer paradigm. Trends in Genetic, 32(1), 1 - 15. doi:10.1016/j.tig.2015.10.001.

Pezic, D., Manakov, S., Sachidanandam, R., & Aravin, A. (2014). piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes & Development, 28, 1410 - 1428. doi:10.1101/gad.240895.114.

Regiani Zarlenga , M., & Vasconcellos , M. (2018). Tumor venéreo transmissível canino. A mais antiga linhagem clonal conhecida na natureza. PUBVET Medicina Veterinaria y Zootecnia, 12(3), 1 - 5. Obtenido de https://doi.org/10.22256/pubvet.v12n3a41.1-5.

Rezaei, M., Azizi, S., Shahheidaripour, S., & Rostami, S. (2016). Primary oral and nasal transmissible venereal tumor in a mix-breed dog. Asian Pacific Journal of Tropical Biomedicine, 6(5), 443 - 445. Obtenido de http://dx.doi.org/10.1016/j.apjtb.2016.03.006

Salcedo, M., Vázquez, G., Hidalgo, A., Pérez, C., Piña, P., Santillásn , K., . . . Cerón , T. (2003). Microarreglos en Oncología. VERTIENTES Revista Especializada en Ciencias de la Salud, 6(1), 19 - 25.

Santos do Amaral, A., Bassani-Silva, S., Ferreira, I., Santos da Fonseca, L., Evangelista de Andrade, F. H., Jantzen Gaspar, L. F., & Sousa Rocha, N. (2007). Cytomorphological characterization of transmissible canine venereal tumor. Revista Portuguesa de Ciencias Veterinarias, 102, 563 - 564. Obtenido de http://www.fmv.ulisboa.pt/spcv/PDF/pdf12_2007/253-260.pdf

Schiffman, J. D., & Breen , M. (2015). Comparative oncology: what dogs and other species can teach us about humans with cancer. Philosophical Transactions of the Real Society of Biological Sciences 370, 1 - 13. doi:10.1098/rstb.2014.0231.

Setthawongsin, C., Techangamsuwan, S., Tangkawattana, S., & Rungsipipat, A. (2016). Cell-based polymerase chain reaction for canine transmissible venereal tumor. Journla of Veterinary Medical Sciences, 78(7), 1167 - 1173. doi:10.1292/jvms.15-0710.

Strakova, A., & Murchinson, E. P. (2015). The cancer which survived: insights from the genome of an 11000 year-old cancer. Current Opinion in Genetics & Development, 30, 49 - 55. doi:10.1016/j.gde.2015.03.005.


The changing global distribution and prevalence of canine transmissible venereal tumour. (2014). BioMedCentral Veterinary Research(10), 168. doi:10.1186/s12917-014-0168-9.

Uribe Yunda, D. F., & Cortés Mancera, F. M. (2014). Metilación del ADN, implicaciones en la carcinogenesis. Revista Cubana de Investigaciones Biomedicas, 33(1), 81 - 93. Obtenido de http://scielo.sld.cu/pdf/ibi/v33n1/ibi09114.pdf

Vascellari, M., Baioni, E., Ru, G., Carminato, A., & Mutinelli, F. (2009). Animal tumour registry of two provinces in northern Italy: incidence of spontaneous tumours in dogs and cats. BMC Veterinary Research, 5 - 39. doi:10.1186/1746-6148-5-39.

Whatson, J., Oster, S., Shago, M., Khosravi, F., & Penn, L. (2002). Identifying Genes Regulated in a Myc-dependent Manner. The Journal of Biological Chemistry, 277(40), 36921 - 36930. doi:10.1074/jbc.M201493200.

White, C. P. (1902). Contagious Growths in dogs. British Medical Journal, 2(2168), 176. Obtenido de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2401418/pdf/brmedj08465-0012.pdf

Withrow, S. J., & Vail, D. M. (1996). Withrow and MacEwen´s Small Animal Oncology. St Louis, Missouri: SAUNDERS ELSEVIER.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |