DOI: 10.17151/vetzo.2017.11.1.4
Cómo citar
Vélez-Ruiz, J. P. ., Tequin-Ocampo , E. B. ., & Vargas Sánchez, J. E. . (2017). Efecto in vitro del aceite de girasol (Helianthus annuus L.) sobre ácido transvacénico y patrón de ácidos grasos de cadena larga en la digesta rumina . Revista Veterinaria Y Zootecnia (On Line), 11(1), 37–53. https://doi.org/10.17151/vetzo.2017.11.1.4

Autores/as

Juan Pablo Vélez-Ruiz
Universidad de Calda
a@a.com
Elsa Beatriz Tequin-Ocampo
Universidad de Caldas
a@a.com
Julio Ernesto Vargas Sánchez
Universidad de Caldas,
jvargas@ucaldas.edu.co

Resumen

La adición de aceites vegetales ricos en ácidos grasos de cadena larga (AGCL) a las dietas para rumiantes se ha propuesto como alternativa para disminuir las emisiones de metano (CH4) y aumentar los niveles de ácido linoleico conjugado (ALC) en la leche y la carne, que está mediado por la producción a ácido transvacénico (ATV) en el rumen. El objetivo de este estudio fue evaluar el efecto de la adición de aceite de girasol en proporciones de 0%, 1% y 3% (con base en MS) a substratos de fermentaciónin vitro (técnica de producción de gas): pasto Kikuyo (Pennisetum clandestinum) o pasto Ryegrass (Lolium perenne), sobre la cinética de producción de gas, la producción de CH4, la concentración de ácidos grasos volátiles (AGV), la producción de ALC y ATV y otros ácidos grasos de cadena larga (AGCL). La adición de aceite de girasol (1% y 3%) no disminuyó la producción de gas (A) ni la tasa de producción de gas (c); sin embargo, sí aumentó el tiempo de retardo en el inicio de la producción de gas (0,042, 0,425 y 0,564 h para control, 1% y 3%, respectivamente; P<0,001). La adición de aceites tampoco redujo la producción de CH4. No obstante, la adición de aceite incrementó ligeramente el porcentaje de ácido propiónico (22,0, 22,5 y 22,6% para control, 1% y 3%, respectivamente; P<0,05). La proporción de ácido linoleico conjugado (ALC) no varió como consecuencia de la adición de aceite, pero la proporción de ácido transvacénico (ATV) sí se incrementó significativamente en respuesta a la adición el aceite (13,4, 16% y 21,8% para control, 1% y 3%, respectivamente; P<0,01). La inclusión de aceite de girasol a niveles del 1 y 3% sobre la materia seca aumentó la producción de ATV a nivel ruminal sin afectar negativamente las variables que caracterizan la fermentación ruminal.

 Abrego, A. Evaluación de una bacteria ruminal acetogénica en la producción de metano in vitro. Montecillo, Texcoco, Edo. de México. Colegio de postgraduados, 2012. Tesis (Maestría en Ciencias).

 AbuGhazaleh, A. Effect of fish oil and sunflower oil supplementation on milk conjugated linoleic acid content for grazing dairy cows. Animal feed science and technology, v.141, n.3, p.220-32. 2008.

 AOAC. Official methods of analysis. Ed. chemists, Association of official analytical. 16th ed. Gaithersburg, MD, USA: AOAC International, 1999.

 Arenas, F.A.; Noguera, R.R.; Restrepo, L.F. Effect of different types of fat on the degradation and fermentation kinetics of the dry matter in vitro in ruminants diet.Revista Colombiana de Ciencias Pecuarias, v.23, n.1, p.55-64. 2010.

 Bauman, D.; Baumgard, L.; Corl, B. et al. Biosynthesis of conjugated linoleic acid in ruminants. Journal of Animal Science, v.77, n.E-Suppl, p.1-15. 2000.

 Beauchemin, K.A.; McGinn, S.M.; Benchaar, C. et al. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, v.92, n.5, p.2118-27. 2009.

 Belury, M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, v.22, p.505-31. 2002.

 Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification.Canadian Journal of Biochemistry and Physiology, v.37, n.8, p.911-17. 1959.

 Broudiscou, L.; Pochet, S.; Poncet, C. Effect of linseed oil supplementation on feed degradation and microbial synthesis in the rumen of ciliate-free and refaunated sheep.Animal Feed Science and Technology, v.49, n.3-4, p.189-202. 1994.

 Chaucheyras-Durand, F.; Masséglia, S.; Fonty, G. et al. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs.Applied and environmental microbiology, v.76, n.24, p.7931-37. 2010.

 Christie, W.W. Gas chromatography and lipids: A practical guide. Ayr, Scotland: Oily Press, 1990.

 Cieslak, A.; Varadyova, Z.; Kisidayova, S. et al. Effect of diets with fruit oils supplements on rumen fermentation parameters, fatty acid composition and methane production in vitro. Journal of Animal and Feed Sciences, v.22, n.1, p.26-34. 2013.

 Corl, B.A.; Baumgard, L.H.; Dwyer, D.A. et al. The role of δ9-desaturase in the production of cis-9, trans-11 cla. The Journal of Nutritional Biochemistry, v.12, n.11, p.622-30. 2001.

 Correa, H.; Pabón, M.; Carulla, J. Estimación del consumo de materia seca en vacas holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development, v.21, n.4, 2009.

 Cosgrove, G.; Waghorn, G.; Anderson, C. et al. The effect of oils fed to sheep on methane production and digestion of ryegrass pasture. Animal Production Science, v.48, n.2, p.189-92. 2008.

Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (cla) in human health.Critical reviews in food science and nutrition, v.52, n.6, p.488-513. 2012.

 Elghandour, M.M.; Kholif, A.E.; Lopez, S. et al. In vitro gas, methane and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses fed live yeasts in response to the supplementation with different yeast additives. Journal of Equine Veterinary Science, 2015.

 Estrada, J. Pastos y forrajes para el trópico colombiano. Manizales: Editorial Universidad de Caldas, 2002. 511p.

 Fievez, V.; Dohme, F.; Danneels, M. et al. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Animal Feed Science and Technology, v.104, n.1-4, p.41-58. 2003.

 Flachowsky, G.; Kamphues, J. Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animals, v.2, n.2, p.108-26. 2012.

 García-González, R.; López, S.; Fernández, M. et al. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Animal Feed Science and Technology,
v.147, n.1-3, p.36-52. 2008.
 Gomez-Cortes, P.; de la Fuente, M.A.; Toral, P.G. et al. Effects of different forage: Concentrate ratios in dairy ewe diets supplemented with sunflower oil on animal performance and milk fatty acid profile. Journal of Dairy Science, v.94, n.9, p.4578- 88. 2011.

 Gomez-Cortes, P.; Frutos, P.; Mantecon, A.R. et al. Addition of olive oil to dairy ewe diets: Effect on milk fatty acid profile and animal performance. Journal of Dairy Science, v.91, n.8, p.3119-27. 2008.

 Hervás, G.; Williams, B.A.; Boer, H. et al. Modificación de la fermentación ruminal in vitro de lolium perenne cuando se suplementa con diferentes dosis de grasa. AIDA - IX Jornadas sobre Producción Animal, 2001.

 IPCC. Climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,, 2007.

Jalc, D.; Certik, M.; Kundrikova, K. et al. Effect of unsaturated c-18 fatty acids (oleic, linoleic and alpha-linolenic acid) on ruminal fermentation and production of fatty acid isomers in an artificial rumen. Veterinarni Medicina, v.52, n.3, p.87-94. 2007.

 Jayanegara, A.; Kreuzer, M.; Leiber, F. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livestock Science, v.147, n.1–3, p.104-12. 2012.

 Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim Sci., v.73, n.8, p.2483-92. 1995.

 Jordan, E.; Kenny, D.; Hawkins, M. et al. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science, v.84, n.9, p.2418-25. 2006.

 Kepler, C.R.; Hirons, K.P.; McNeill, J.J. et al. Intermediates and products of the biohydrogenation of linoleic acid by butyrivibrio fibrisolvens. Journal of Biological Chemistry, v.241, n.6, p.1350-54. 1966.

 Khanal, R.C.; Dhiman, T.R. Biosynthesis of conjugated linoleic acid (cla): A review.Pakistan Journal of Nutrition, v.3, n.2, p.72-81. 2004.

 Li, Y.L.; Meng, Q.X. Effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and production of conjugated linoleic acids in vitro. Archives of Animal Nutrition, v.60, n.5, p.402-11. 2006.

 Lila, Z.A.; Mohammed, N.; Kanda, S. et al. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian Australasian Journal of Animal Sciences, v.18, n.12, p.1746. 2005.

 López, S.; Dhanoa, M.S.; Dijkstra, J. et al. Some methodological and analytical considerations regarding application of the gas production technique. Animal Feed Science and Technology, v.135, n.1-2, p.139-56. 2007.

 Machmüller, A.; Ossowski, D.A.; Wanner, M. et al. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (rusitec). Animal Feed Science and Technology, v.71, n.1-2, p.117-30. 1998.

 McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, v.48, n.2, p.7-13. 2008.

 McCrorie, T.A.; Keaveney, E.M.; Wallace, J.M. et al. Human health effects of conjugated linoleic acid from milk and supplements. Nutrition research reviews, v.24, n.02, p.206-27. 2011.

 Mele, M.; Buccioni, A.; Petacchi, F. et al. Effect of forage/concentrate ratio and soybean oil supplementation on milk yield, and composition from sarda ewes. Animal Research, v.55, n.4, p.273-85. 2006.

 Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, v.28, p.7-55. 1988.

 Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech., v.49, n.3, p.231-53. 2000.

 Palmquist, D.L. Biohydrogenation then and now. European Journal of Lipid Science and Technology, v.109, n.8, p.737-39. 2007.

 Panyakaew, P.; Goel, G.; Lourenço, M. et al. Medium-chain fatty acids from coconut or krabok oil inhibit in vitro rumen methanogenesis and conversion of non-conjugated dienoic biohydrogenation intermediates. Animal Feed Science and Technology, 2013.

 Patra, A.K.; Yu, Z. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. J Dairy Sci, v.96, n.3, p.1782-92. 2013.

 Preston, T. Tropical animal feeding: A manual for research workers. FAO Animal Productin and Health Paper 126, 1995.

 Prieto-Manrique, E.; Mahecha-Ledesma, L.; Angulo-Arizala, J. et al. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agronomía Mesoamericana, v.27, n.2, p.421-37. 2016a.

 Prieto-Manrique, E.; Vargas-Sánchez, J.; Angulo-Arizala, J. et al. Suplementación con aceite de girasol sobre ácidos grasos de la leche en una lechería tropical. Revista Colombiana de Ciencia Animal-RECIA, v.8, n.Supl, p.297-309. 2016b.

 Russell, J.B. The importance of ph in the regulati on of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science, v.81, n.12, p.3222-30. 1998.

 Sánchez, D.E.; Arreaza, L.C.; Abadia, B. Estudio de la cinética de degradación in vitro de cuatro forrajes tropicales y una leguminosa en clima templado. Revista CORPOICA Ciencia y Tecnología Agropecuaria (Colombia), v.6, n.1, p.58- 68.2005.

 Soder, K.J.; Brito, A.F.; Rubano, M.D. Short communication: Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. J Dairy Sci, v.96, n.4, p.2551-6. 2013.

 Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S. et al. A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, v.48, n.3-4, p.185-97. 1994.

 Toprak, N.N. Do fats reduce methane emission by ruminants? -a review. Animal Science Papers and Reports, v.33, n.4, p.305-21. 2015.

 Toral, P.G.; Bernard, L.; Belenguer, A. et al. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil. Journal of Dairy Science, v.99, n.1, p.301-16. 2016.

 Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, v.74, n.10, p.3583-97. 1991.

 Vargas, J.; Cárdenas, E.; Pabón, M. et al. Emisión de metano entérico en rumiantes en pastoreo. Arch. Zootec, v.61, p.51-66. 2012.

 Weiss, M.F.; Martz, F.A.; Lorenzen, C.L. Review: Conjugated linoleic acid: Historical context and implications. The Professional Animal Scientist, v.20, n.2, p.118-26. 2004.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |