DOI: 10.17151/vetzo.2017.11.1.4
How to Cite
Vélez-Ruiz, J. P. ., Tequin-Ocampo , E. B. ., & Vargas Sánchez, J. E. . (2017). In vitro effect of sunflower oil (Helianthus Annuus L.) on transvacenic acid and long chain fatty acid pattern in ruminal digesta. Revista Veterinaria Y Zootecnia (On Line), 11(1), 37–53. https://doi.org/10.17151/vetzo.2017.11.1.4

Authors

Juan Pablo Vélez-Ruiz
Universidad de Calda
a@a.com
Elsa Beatriz Tequin-Ocampo
Universidad de Caldas
a@a.com
Julio Ernesto Vargas Sánchez
Universidad de Caldas,
jvargas@ucaldas.edu.co

Abstract

The addition of vegetable oils rich in long chain fatty acids (LCFA) to ruminant diets has been proposed as an alternative to reduce methane (CH4) and increase levels of conjugated linoleic acid (CLA) in milk and meat, that is preceded by the production of transvacenic acid (TVA) in the rumen. The objective of this study was to evaluate the effect of the supplementation of sunflower oil in proportions of 0%, 1% and 3% (DM bases) to in vitro fermentation substrates (gas production technique):Pennisetum clandestinum or Lolium perenne, on the kinetics and total gas production, CH4 production, concentration of volatile fatty acids (VFA), production of CLA and TVA and the pattern of long chain fatty acids (LCFA). Addition of sunflower oil (1% and 3%) did not decrease gas production (A) or gas production rate (c); however, it increased the time delay to start fermentation (L, 0.042, 0.425 y 0.564 h for control, 1% y 3%, respectively; P<0.001). Oil addition also did not reduce production of CH4. Nevertheless, it slightly increased the percentage of propionic acid (22, 22.5 y 22.6% for control, 1% y 3%, respectively; P<0.05). The proportion of conjugated linoleic acid (CLA) did not change because of the supplementation of oil, but the proportion of transvacenic acid (TVA) increased significantly in response to the addition of oil (13.4, 16% y 21.8% for control, 1% y 3%, respectively; P<0.01). The inclusion of sunflower oil at levels of 1 and 3% of the dry matter increased ruminal production of TVA without affecting negatively the variables that characterize the ruminal fermentation.

 Abrego, A. Evaluación de una bacteria ruminal acetogénica en la producción de metano in vitro. Montecillo, Texcoco, Edo. de México. Colegio de postgraduados, 2012. Tesis (Maestría en Ciencias).

 AbuGhazaleh, A. Effect of fish oil and sunflower oil supplementation on milk conjugated linoleic acid content for grazing dairy cows. Animal feed science and technology, v.141, n.3, p.220-32. 2008.

 AOAC. Official methods of analysis. Ed. chemists, Association of official analytical. 16th ed. Gaithersburg, MD, USA: AOAC International, 1999.

 Arenas, F.A.; Noguera, R.R.; Restrepo, L.F. Effect of different types of fat on the degradation and fermentation kinetics of the dry matter in vitro in ruminants diet.Revista Colombiana de Ciencias Pecuarias, v.23, n.1, p.55-64. 2010.

 Bauman, D.; Baumgard, L.; Corl, B. et al. Biosynthesis of conjugated linoleic acid in ruminants. Journal of Animal Science, v.77, n.E-Suppl, p.1-15. 2000.

 Beauchemin, K.A.; McGinn, S.M.; Benchaar, C. et al. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, v.92, n.5, p.2118-27. 2009.

 Belury, M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, v.22, p.505-31. 2002.

 Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification.Canadian Journal of Biochemistry and Physiology, v.37, n.8, p.911-17. 1959.

 Broudiscou, L.; Pochet, S.; Poncet, C. Effect of linseed oil supplementation on feed degradation and microbial synthesis in the rumen of ciliate-free and refaunated sheep.Animal Feed Science and Technology, v.49, n.3-4, p.189-202. 1994.

 Chaucheyras-Durand, F.; Masséglia, S.; Fonty, G. et al. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs.Applied and environmental microbiology, v.76, n.24, p.7931-37. 2010.

 Christie, W.W. Gas chromatography and lipids: A practical guide. Ayr, Scotland: Oily Press, 1990.

 Cieslak, A.; Varadyova, Z.; Kisidayova, S. et al. Effect of diets with fruit oils supplements on rumen fermentation parameters, fatty acid composition and methane production in vitro. Journal of Animal and Feed Sciences, v.22, n.1, p.26-34. 2013.

 Corl, B.A.; Baumgard, L.H.; Dwyer, D.A. et al. The role of δ9-desaturase in the production of cis-9, trans-11 cla. The Journal of Nutritional Biochemistry, v.12, n.11, p.622-30. 2001.

 Correa, H.; Pabón, M.; Carulla, J. Estimación del consumo de materia seca en vacas holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development, v.21, n.4, 2009.

 Cosgrove, G.; Waghorn, G.; Anderson, C. et al. The effect of oils fed to sheep on methane production and digestion of ryegrass pasture. Animal Production Science, v.48, n.2, p.189-92. 2008.

Dilzer, A.; Park, Y. Implication of conjugated linoleic acid (cla) in human health.Critical reviews in food science and nutrition, v.52, n.6, p.488-513. 2012.

 Elghandour, M.M.; Kholif, A.E.; Lopez, S. et al. In vitro gas, methane and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses fed live yeasts in response to the supplementation with different yeast additives. Journal of Equine Veterinary Science, 2015.

 Estrada, J. Pastos y forrajes para el trópico colombiano. Manizales: Editorial Universidad de Caldas, 2002. 511p.

 Fievez, V.; Dohme, F.; Danneels, M. et al. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Animal Feed Science and Technology, v.104, n.1-4, p.41-58. 2003.

 Flachowsky, G.; Kamphues, J. Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animals, v.2, n.2, p.108-26. 2012.

 García-González, R.; López, S.; Fernández, M. et al. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Animal Feed Science and Technology,
v.147, n.1-3, p.36-52. 2008.
 Gomez-Cortes, P.; de la Fuente, M.A.; Toral, P.G. et al. Effects of different forage: Concentrate ratios in dairy ewe diets supplemented with sunflower oil on animal performance and milk fatty acid profile. Journal of Dairy Science, v.94, n.9, p.4578- 88. 2011.

 Gomez-Cortes, P.; Frutos, P.; Mantecon, A.R. et al. Addition of olive oil to dairy ewe diets: Effect on milk fatty acid profile and animal performance. Journal of Dairy Science, v.91, n.8, p.3119-27. 2008.

 Hervás, G.; Williams, B.A.; Boer, H. et al. Modificación de la fermentación ruminal in vitro de lolium perenne cuando se suplementa con diferentes dosis de grasa. AIDA - IX Jornadas sobre Producción Animal, 2001.

 IPCC. Climate change 2007: The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,, 2007.

Jalc, D.; Certik, M.; Kundrikova, K. et al. Effect of unsaturated c-18 fatty acids (oleic, linoleic and alpha-linolenic acid) on ruminal fermentation and production of fatty acid isomers in an artificial rumen. Veterinarni Medicina, v.52, n.3, p.87-94. 2007.

 Jayanegara, A.; Kreuzer, M.; Leiber, F. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livestock Science, v.147, n.1–3, p.104-12. 2012.

 Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim Sci., v.73, n.8, p.2483-92. 1995.

 Jordan, E.; Kenny, D.; Hawkins, M. et al. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science, v.84, n.9, p.2418-25. 2006.

 Kepler, C.R.; Hirons, K.P.; McNeill, J.J. et al. Intermediates and products of the biohydrogenation of linoleic acid by butyrivibrio fibrisolvens. Journal of Biological Chemistry, v.241, n.6, p.1350-54. 1966.

 Khanal, R.C.; Dhiman, T.R. Biosynthesis of conjugated linoleic acid (cla): A review.Pakistan Journal of Nutrition, v.3, n.2, p.72-81. 2004.

 Li, Y.L.; Meng, Q.X. Effect of different types of fibre supplemented with sunflower oil on ruminal fermentation and production of conjugated linoleic acids in vitro. Archives of Animal Nutrition, v.60, n.5, p.402-11. 2006.

 Lila, Z.A.; Mohammed, N.; Kanda, S. et al. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian Australasian Journal of Animal Sciences, v.18, n.12, p.1746. 2005.

 López, S.; Dhanoa, M.S.; Dijkstra, J. et al. Some methodological and analytical considerations regarding application of the gas production technique. Animal Feed Science and Technology, v.135, n.1-2, p.139-56. 2007.

 Machmüller, A.; Ossowski, D.A.; Wanner, M. et al. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (rusitec). Animal Feed Science and Technology, v.71, n.1-2, p.117-30. 1998.

 McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, v.48, n.2, p.7-13. 2008.

 McCrorie, T.A.; Keaveney, E.M.; Wallace, J.M. et al. Human health effects of conjugated linoleic acid from milk and supplements. Nutrition research reviews, v.24, n.02, p.206-27. 2011.

 Mele, M.; Buccioni, A.; Petacchi, F. et al. Effect of forage/concentrate ratio and soybean oil supplementation on milk yield, and composition from sarda ewes. Animal Research, v.55, n.4, p.273-85. 2006.

 Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, v.28, p.7-55. 1988.

 Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech., v.49, n.3, p.231-53. 2000.

 Palmquist, D.L. Biohydrogenation then and now. European Journal of Lipid Science and Technology, v.109, n.8, p.737-39. 2007.

 Panyakaew, P.; Goel, G.; Lourenço, M. et al. Medium-chain fatty acids from coconut or krabok oil inhibit in vitro rumen methanogenesis and conversion of non-conjugated dienoic biohydrogenation intermediates. Animal Feed Science and Technology, 2013.

 Patra, A.K.; Yu, Z. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. J Dairy Sci, v.96, n.3, p.1782-92. 2013.

 Preston, T. Tropical animal feeding: A manual for research workers. FAO Animal Productin and Health Paper 126, 1995.

 Prieto-Manrique, E.; Mahecha-Ledesma, L.; Angulo-Arizala, J. et al. Efecto de la suplementación lipídica sobre ácidos grasos en leche de vaca, énfasis en ácido ruménico. Agronomía Mesoamericana, v.27, n.2, p.421-37. 2016a.

 Prieto-Manrique, E.; Vargas-Sánchez, J.; Angulo-Arizala, J. et al. Suplementación con aceite de girasol sobre ácidos grasos de la leche en una lechería tropical. Revista Colombiana de Ciencia Animal-RECIA, v.8, n.Supl, p.297-309. 2016b.

 Russell, J.B. The importance of ph in the regulati on of ruminal acetate to propionate ratio and methane production in vitro. Journal of Dairy Science, v.81, n.12, p.3222-30. 1998.

 Sánchez, D.E.; Arreaza, L.C.; Abadia, B. Estudio de la cinética de degradación in vitro de cuatro forrajes tropicales y una leguminosa en clima templado. Revista CORPOICA Ciencia y Tecnología Agropecuaria (Colombia), v.6, n.1, p.58- 68.2005.

 Soder, K.J.; Brito, A.F.; Rubano, M.D. Short communication: Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. J Dairy Sci, v.96, n.4, p.2551-6. 2013.

 Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S. et al. A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, v.48, n.3-4, p.185-97. 1994.

 Toprak, N.N. Do fats reduce methane emission by ruminants? -a review. Animal Science Papers and Reports, v.33, n.4, p.305-21. 2015.

 Toral, P.G.; Bernard, L.; Belenguer, A. et al. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil. Journal of Dairy Science, v.99, n.1, p.301-16. 2016.

 Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, v.74, n.10, p.3583-97. 1991.

 Vargas, J.; Cárdenas, E.; Pabón, M. et al. Emisión de metano entérico en rumiantes en pastoreo. Arch. Zootec, v.61, p.51-66. 2012.

 Weiss, M.F.; Martz, F.A.; Lorenzen, C.L. Review: Conjugated linoleic acid: Historical context and implications. The Professional Animal Scientist, v.20, n.2, p.118-26. 2004.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |