Cómo citar
Tatis Castro, R. D., & Barbosa López, A. L. (2013). Enfoque químico del deterioro y biodeterioro de rocas calcáreas conformantes de monumentos patrimoniales de importancia histórica y cultural. Luna Azul, (36), 247–284. Recuperado a partir de https://revistasojs.ucaldas.edu.co/index.php/lunazul/article/view/1667

Autores/as

Roy David Tatis Castro
Universidad de Caldas
Davidtatis19@gmail.com
Aida Liliana Barbosa López
Universidad de Cartagena
abarbosal@unicartagena.edu.co

Resumen

Los monumentos pétreos declarados como patrimonio histórico son deteriorados a través del tiempo por efecto de agentes físicos, químicos y medioambientales. Estos últimos dependen en gran medida de la ubicación geográfica del inmueble, dichos agentes son: el régimen de vientos que desgasta la roca erosionándola; temporadas de lluvia que al contener sales disueltas causan corrosión por reacciones químicas de estas con la matriz del material calcáreo solubilizando el carbonato de calcio el cual es su principal componente; radiación solar durante todo el año causante de decoloramiento; humedad que permite el establecimiento de formas de vida. Las actividades antropogénicas que no son amigables con el ambiente son otro factor determinante, las emisiones de gases vehiculares por ejemplo, deterioran en gran medida los monumentos de piedra antiguos por ser agentes ácidos altamente corrosivos. Se crean así las condiciones para el establecimiento y proliferación de organismos vivos en la piedra tales como bacterias, algas, hongos, líquenes y plantas que por ser invasivos y colonizadores causan biodeterioro. Dado que los metabolismos de estas especies involucran el consumo de sustratos químicos orgánicos e inorgánicos presentes en la roca, son otro factor que va en detrimento de la estabilidad, durabilidad, y apariencia estética de la misma. 

Al-Algha, M. R. (2006). Weathering of building stones and its relationship to the sustainable management of the aggregate resources in Gaza strip, Palestine. Building and environment, 41(5), 680, 681.

Allsopp,D.; Seal, K.y Gaylarde,C. (2004). Introductionto biodeterioration. Cambridge University Press.1,35-42, 143.

 Alves, C. A.; Sequeira Braga, M. A. y Trancoso, A.(2002). Saline pollution in trachyte monuments of the Azores islands (Portugal). Elsevier proceedings of the 9th international congress on deterioration and conservation of stone. 225.

Andriani, G. F., Walsh,N. (2007). The effects of wetting and drying, and marine salt crystallization on calcarenite rocks used as building material in historic monuments. Geological society, London, special publications, 271,179, 180.

Bai, Y.; Thompson, G. E. y Martínez-Ramírez, S. (2006). Effects of NO2 on oxidation mechanisms of atmospheric
pollutant so2 over Baumberger sandstone. Building andenvironment, 41, 490.

Barbosa López, A.; Buendía, C. y Cortés, L. (2007). Estudio fisicoquímico del deterioro del material pétreo
estructural antiguo de las murallas de Cartagena de Indias-Colombia (Baluarte de Santiago). Revista ciencias e ingenierías al día-Universidad de Cartagena, 1, 101.

Bede, E. (2000). Characterization of surface morphology of carbonate stone and its effect on surface uptake of
so2. Elsevier proceedings of the 9th international congress on deterioration and conservation of stone.303,304.

Bello, M. A. y Pérez Bernal, J. L. (2003). Modeling sulfurdioxide deposition on calcium carbonate. Ind. eng.chem. res, 42, 1028.

Benavente, D.; García del Cura, M. A.; García-Guinea, J.; Sánchez-Moral, S. y Ordóñez, S. (2004). Role of pore
structure in salt cristallization in unsaturated porousstone. Journal of crystal growth, 260, 532.

Benavente, D.; Martínez-Martínez, J.; Cueto, N.; García del Cura, M. A. (2007). Salt weathering in dual-porosity
building dolostones. Engineering geology, 94, 215, 216.

Böke, H.; Göktürk, H. E.; Caner-Saltik, E. N. y Demirsi, Ş. (1999). Effect of airborne particle on SO2-calcite reaction. Applied surface science, 140, 70, 71, 74.

Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C. M. y Brimblecombe, P. (2009). Mapping the impact of climate
change on surface recession of carbonate buildings in Europe. Science of the total environment, 407, 2039,2040.

Borgia, G. C.; Camaiti, M.; Cerri, F.; Fantazzini, P. y Piacenti, F. (2000). Study of water penetration in rock
materials by NMR tomography: hydrophobic treatmenteffects. Journal of cultural heritage, 1, 128.

Camaiti, M.; Bugani, S.; Bernardi, E.; Morselli, L. y Matteini, M. (2007). Effect of atmospheric NOx on biocalcarenite coated with different conservation products. Applied geochemistry, 22, 1248.

Camuffo, D. (1998). Microclimate for cultural heritage. Developments in atmospheric science 23 Elsevier
science b.v. 12, 13.

Cardell, C.; Benavente, D. y Rodríguez-Gordillo, J., (2008). Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Materials characterization, 59, 1371.

Cardell, C.; Delalieux, F.; Roumpopoulos, K.; Moropoulou, A.; Auger, F. y Van Grieken, R. (2003). Salt-induced decay in calcareous stone monuments and buildings in a marine environment in sw France.Construction and building materials, 17, 165.

Cataldo, R.; De Donno, A.; De Nunzio, G.; Leucci, G.; Nuzzo, L. y Siviero, S. (2005). Integrated methods for
analysisof deterioration of cultural heritage: the Crypt of“Cattedrale di Otranto”.Journal of cultural heritage, 6,31.

Charola, A. E. y Ware, R. (2002). Acid deposition and the deterioration of stone: A brief review of a broad topic.
Geological society, London, special publications, 205, 393-399.

Colston, B. J.; Watt, D. S. y Munro, H. L. (2001). Environmentally-induced stone decay: the cumulative effects of crystallization-hydration cycles on a Lincolnshire oopelsparite limestone. Journal of cultural heritage, 4,304, 305.

Coussy, O. (2006). Deformation and stress from in-pore drying-induced crystallization of salt. Journal of mechanics and physics of solids, 54, 1518, 1526.

Crispim, A. C.; Gaylarde, M. P.; Gaylarde, C. C. y Brett, A. N. (2006). Deteriogenic cyanobacteria on historic buildings in Brazil detected by culture and molecular techniques. International biodeterioration and biodegradation, 57, 239, 240.

Crispim, C. A. y Gaylarde, C. C. (2004). Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial ecology, 49, 3.

Crispim, C. A.; Gaylarde, C. C. y Gaylarde, P. M. (2004). Biofilms on church walls in Porto Alegre, rs, Brazil, with
special attention to cyanobacteria. International biodeterioration and biodegradation, 54, 122.

De los Ríos, A.; Cámara, B.; García del Cura, M.; Rico, V.; Galván, V. y Ascaso, C. (2009). Deteriorating effects
of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Science of the total environment, 407, 1127.

Doehne, E. (2002). Salt weathering:a selective review.Geological society, London, special publications, 205,51-56.

Doehne, E. y Price, C. (2010). Stone conservation, anoverview of current research. The getty trust publications, 2,15.
Espinosa, R. M.; Franke, L. y Deckelmann, G. (2008). Predicting efflorescence and subflorescences of salts. Matter. res. soc. symp. proc., 1047.

Espinosa-Marzal, R. y Scherer, G. W. (2010). Advances in understanding damage by salt crystallization.
Accounts of chemical research, 43, 897-900.

Fernandes, P. (2006). Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Applied microbiology and biotechnology, 73, 292.

Flatt, R. J. (2002). Salt damage in porous materials: how high supersaturations are generated. Journal of crystal
growth, 242, 435, 437.

Flores, M.; Lorenzo, J. y Gómez-Alarcón, G., (1997). Algae and bacteria on historic monuments at Alcalá de
Henares, Spain. International biodeterioration and biodegradation, 40, 244.

Gaylarde, C. y Crispim, C. (2005). Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial
ecology, 49, 1.

Gaylarde, C. y Gaylarde, P. (2005). A comparative study of the major microbial biomass of biofilms on exteriors
of buildings in Europe and Latin America. International biodeterioration and biodegradation, 55, 131-133.

Gaylarde, C.; Gaylarde, P. y Neilan, B. A. (2012). Endolithic phototrophs in built and natural stone. Current microbiology, 65, 183-8.

Ghedini, N.; Gobbi, G.; Sabbioni, C. y Zappia, G. (2000). Determination of elemental and organic carbon on
damaged stone monuments. Atmospheric environment, 34, 4383.

Ghedini, N.; Sabbioni, C. y Pantani, M. (2003). Thermal analysis in cultural heritage safeguard: an application.
Thermochimica acta, 406, 105.

Giavarini, C.; Santarelli, M. L.; Natalini, R. y Freddi, F. (2008). A non-linear model of sulphation of porous
stones: numerical simulations and preliminary laboratory assessments. Journal of cultural heritage, 9,14, 15.

Gómez-Alarcón, G. y De la Torre, M. A. (1994). The effect of filamentous fungi on stone monuments: the
spanish experience. Building mycology, 13, 272.

Gómez-Bolea, A.; Llop, E.; Ariño, X.; Sáiz-Jiménez, C.; Bonazza, A.; Messina, P. y Sabbioni, C. (2011). Mapping the impact of climate change on biomass accumulation on stone. Journal of cultural heritage, article in press, 2.

Grøntoft, T. (2002). Dry deposition of ozone on building materials. Chamber measurements and modeling of the time-dependent deposition. Atmospheric environment, 36, 5661.

Grossi, C. M.; Esbert, R. M.; Díaz-Pache, F. y Alonso, F.J. (2003). Soiling of building stones in urban environments. Building and environment, 38, 147.

Grossi, C. M. y Murray, M. (1999). Characteristic of carbonate building stones that influence the dry deposition of acidic gases. Construction and building materials, 13, 101, 103.

Guillite, O. (1995). Bioreceptivity: a new concept for building ecology studies. Science of the totalenvironment, 167, 215-220.

Hale Jr., M E. (1980). Control of biological growths on Mayan archaeological ruins in Guatemala and Honduras. National geographic research reports, Washington D.C. 305-321.

Harris, B. (2001). The weathering of limestone and the effect of airborne pollution. A discussion paper for the
air quality working group of the bradford-on-avon preservation trust, 3, 4, 15.

Herrera, L. K. y Videla, H. A. (2004). The importance ofatmospheric effects on biodeterioration of cultural
heritage constructional materials. International biodeterioration and biodegradation, 54, 125.

Jain, K. y Mishra, A. K. (1993). Effect of atmospheric pollution on monuments and historic buildings. Environment manager division steel authority of India, 95, 96.

Johnson, J. B.; Montgomery, M.; Thompson, G. E.; Wood, G. C.; Sage, P. W. y Cooke, M. J. (1996). The influence of combustion-derived pollutants on limestone deterioration: 1. the dry deposition of pollutant gases.
Corrosion science, 38, 118.

Kirkitsos, P. y Sikiotis, D. (1996). Deterioration of Pentelicmarble, Portland limestone and Baumberger sandstone in laboratory exposures to NO2: a comparison withexposures to HNO3. Atmospheric environment, 30, 941.

Krumbein, W. y Gorbushina, A. (2009). The effects of airpollution on cultural heritage. Springer, 140.

Kumar, R. y Kumar, A. (1999). Biodeterioration of stone in tropical environments: an overview. The getty
conservation institute, research in conservation, 15, 16,18-20, 25, 27.

Lisci, M.; Monte, M. y Pacini, E. (2003). Lichens and higher plants on stone: a review. International biodeterioration and biodegradation, 51, 7-10.

Liu Zhi, R.; Zhang Jian, B.; Zhang, H. y Shi Feng, M. (2011). Deterioration of Yungang grottoes: diagnosis and research. Journal of cultural heritage, article inpress, 3.

Lubelli, B.; Van Hees, R. P. y Groot, C. J. (2004). The role of sea salts in the occurrence of different damage
mechanisms and decay patterns on brick masonry. Construction and building materials, 18, 121-124.

Mansch, R. y Bock, E. (1998). Biodeterioration of natural stone with special reference to nitrifying bacteria.
Biodegradation, 9, 49.

Marimoni, N.; Birelli, M. P.; Rostagno, C. y Pavese, A. (2003). The effects of atmospheric multipollutants on
modern concrete. Atmospheric environment, 37, 4701,4711.

Massey, S. W. (1999). The effects of ozone and nox on the deterioration of calcareous stone. The science of the
total environment, 227, 109, 112, 113.

Maurício, A.; Pacheco, A.; Brito, P.; Castro, B.; Figuereido, C. y Aires-Barros, l. (2005). An ionic conductivity-based methodology for monitoring saltsystems in monuments stones. Journal of cultural heritage, 6, 287, 288.

McAlister, J. J.; Smith, B. J. y Török, A. (2008). Transition metals and water-soluble ions in deposits on a buildings
and their potential catalysis of stone decay. Atmospheric environment, 42, 7657.

Miller, A. Z.; Sanmartín, P.; Pereira-Pardo, L.; Dionísio, A.; Sáiz-Jiménez, C.; Macedo, M. F. y Prieto, B. (2012).
Bioreceptivity of building stones: a review. Science of the total environment, 426, 5.

Minotas Ruiz, J. (2002). Corrosión atmosférica importancia, principios generales, factores influyentes. Prevención y protección del patrimonio cultural iberoamericano de los efectos del biodeterioro ambiental. Memorias. 31, 32.

Mitchell, R. y Gu, J. (2010). Environmental microbiology. Wiley-Blackwell, 2, 144-146.

Mottershead, D.; Gorbushina, A.; Lucas, G. y Wright, J. (2003). The influence of marine salts, aspect and
microbes in the weathering of sandstone in two historic structures. Building and environment, 38, 1193.
Naresh, R.; Sundar, S. y Shukla, J. B. (2006). Modeling the removal of primary and secondary pollutants from
the atmosphere of a city by rain. Applied mathematics and computation, 179, 282, 283.

Nuhoglu, Y.; Oguz, E.; Uslu, H.; Ozbek, A.; Ipekoglu, I.; Ocak, I. y Hasenekoglu, I. (2006). The accelerating
effect of the microorganisms on biodeterioration of stone monuments under air pollution and continentalcold climatic conditions in Erzurum, Turkey. Science of the total environment, 364, 273-274.

Orecchio, S. (2010). Analytical method, pattern and sources of polycyclic aromatic hydrocarbons (pahs) in
the stone of the temples of Agrigento (Italy). Journal of hazardous materials, 176, 339.

Papida, S.; Murphy, W. y May, E. (2000). Enhancement of physical weathering of building stones by microbial
populations. International biodeterioration and degradation, 46, 305, 306.

Pérez Bernal, J. y Bello López, M. (2000). The fractal dimension of stone pore surface as weathering descriptor. Aplied surface science, 161, 47.

Pesava, P.; Aksu, R.; Toprak, S.; Horvath, H. y Seidl, S. (1999). Dry deposition of particles to building surfaces
and soiling. The science of the total environment, 235,25-27.

Pope, G. A.; Meierding, T. C. y Paradise, T. R. (2002). Geomorphology’s role in the study of weathering of
cultural stone. Geomorphology, 47, 212.

Rijniers, L. A.; Huinink, H. P.; Pel, L. y Kopinga, K. (2003). Salt crystallization as damage mechanism in porous building materials. Euromat 2003, Symposium – p2 materials and conservation of cultural heritage, salt damage session.

Ruedrich, J.; Seidel, M.; Rothert, E. y Siegesmund, S. (2007). Length changes of sandstones caused by salt
cristallyzation. Geological society, London, Special publications, 271, 200.

Ruiz-Agudo, E.; Mees, F.; Jacobs, P. y RodríguezNavarro, C. (2007). The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environmental geology, 52, 269-281.

Saiz-Jiménez, C. (1991). Characterization of organic compounds in weathered stones. Proceedings of
European symposium in science, technology and European cultural heritage, 523-526.

________. (1997). Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants
deposited on historic buildings. International biodeterioration and biodegradation, 40, 226, 227.

Salvadori, O. y Charola, E. (2009). Methods to prevent biocolonization and recolonization: an overview of
current research for architectural and archaeological heritage. Biocolonization of stone: control and preventive methods proceedings from the mci workshop series. Smithsonian contributions to museum conservation number 2, 38, 39.

Sánchez Sanjurjo, J.; Vidal Romaní, J. R. y Alves, C. (2011). Deposition of particles on gypsum-rich coatings
of historic buildings urban and rural environments.Construction and building materials, 25, 813.

Sand, W. (1997). Microbial mechanisms of deterioration of inorganic substrates- A general mechanistic
overview. International biodeterioration and biodegradation, 40, 186.

Scheerer, S.; Ortega-Morales, O. y Gaylarde, C. (2009). Microbial deterioration of stone monuments- An updated overview. Advances in applied microbiology, 66, 99, 111, 112, 117, 123, 125.

Screpanti, A. y De Marco, A. (2009). Corrosion on cultural heritage buildings in Italy: A role for ozone?Environmental pollution, 157, 1513.

Sebastián, E.; Cultrone, G.; Benavente, D.; Fernández Linares, L.; Elert, K. y Rodríguez-Navarro, C. (2008).

Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). Journal of cultural heritage, 9, 73.

Silva, Z. S. y Simão, J. A. (2009). The role of salt fog on alteration of dimension stone. Construction and building
materials, 23, 3326.

 Slezakova, K.; Castro, D.; Begonha, A.; Delerue-Matos, C.; Alvim-Ferraz, M.; Morais, S. y Pereira, M. (2011). Air
pollution from traffic emissions in Oporto, Portugal: health and environmental implications. Microchemical
journal, 99, 51, 52.

Sterflinger, K. (2010). Fungi: their role in deterioration of cultural heritage: review. Fungal biology reviews, 24,
49-51.

Striegel, M. F.; Bede Guin, E.; Hallett, K.; Sandoval, D.; Swingle, R.; Knox, K.; Best, F. y Fornea, S. (2003). Air
pollution, coatings, and cultural resources. Progress in organic coatings, 48, 282.

Tittarelli, F.; Moriconi, G. y Bonazza, A. (2008). Atmospheric deterioration of cement plaster in a building exposed to a urban environment. Journal of cultural heritage, 9, 204.

Tomaselli, L.; Lamenti, G.; Bosco, M. y Tiano, P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. International biodeterioration and biodegradation, 46, 251.

Ventikou, M.; Halls, C.; Lindsay, W.; Batchelder, M. y Hubbard, C. (2002). An evaluation of geology and weathering in the preservation of marl objects. Elsevier proceedings of the 9th international congress on
deterioration and conservation of stone. 287.

 Warscheid, Th. y Braams, J. (2000). Biodeterioration of stone: a review. Journal of biodeterioration and biodegradation, 46, 343, 344, 347, 350, 352.

Watt, J.; Tidblad, J.; Kucera, V. y Hamilton, R. (2009). The effects of air pollution on cultural heritage. Springer,
6, 10, 12, 14-16, 22-23, 138.

Young, P. (1996). Pollution-fueled “biodeterioration” threatens historic stone. Environmental science and
technology, 30, 206.

Zanardini, E.; Abbruscato, P.; Ghedini, N.; Readini, M. y Sorlini, C. (2000). Influence of atmospheric pollutants on the biodeterioration of stone. International biodeterioration and biodegradation, 45, 35, 42.

Zedef, V.; Kocak, K.; Doyen, A.; Ozsen, H. y Kekec, B. (2007). Effect of salt crystallization on stones of historical buildings and monuments, Konya, Central Turkey. Building and environment, 42, 1456.

Descargas

Los datos de descargas todavía no están disponibles.
Sistema OJS - Metabiblioteca |