Autores/as
Resumen
La psilocibina es un alcaloide psicodélico producido naturalmente por diversas especies de hongos, especialmente del género Psilocybe, cuyo uso por parte de culturas precolombinas ha sido ampliamente documentado. En la última década, tras años de estigmatización y restricción de uso, se han reactivado las investigaciones sobre las potencialidades terapéuticas de este psicodélico clásico para el tratamiento de múltiples trastornos psiquiátricos, entre ellos el trastorno depresivo mayor. La depresión es un desorden afectivo del estado de ánimo cuya prevalencia mundial se ha incrementado considerablemente en los últimos años y cuyo tratamiento con fármacos convencionales tiene limitada eficacia. Los hallazgos recientes señalan que la psilocibina, en cambio, pueden tener un efecto antidepresivo rápido y sostenido, incluso en individuos con depresión resistente al tratamiento. Aunque aún no se han dilucidado por completo los mecanismos subyacentes a dicho efecto, se ha planteado que estaría mediado por cambios a nivel de neurotransmisión, de plasticidad estructural y funcional y de conectividad de diferentes redes cerebrales. En esta revisión narrativa se presenta una síntesis de la evidencia clínica a favor del efecto antidepresivo de la psilocibina, se exponen algunos mecanismos de acción plausibles que han sido objeto de estudio y se discuten algunos interrogantes y perspectivas del uso del alcaloide en el ámbito clínico.
Palabras clave:
Citas
Anke, T. (2020). Secondary metabolites from mushrooms. The Journal of Antibiotics, 73(10), 655-656. https://doi.org/10.1038/s41429-020-0358-6
Artigas, F., Bortolozzi, A. y Celada, P. (2018). Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. European Neuropsychopharmacology, 28(4), 445-456. https://doi.org/10.1016/J.EURONEURO.2017.10.032
Artin, H., Zisook, S. y Ramanathan, D. (2021). How do serotonergic psychedelics treat depression: The potential role of neuroplasticity. World Journal of Psychiatry, 11(6), 201. https://doi.org/10.5498/WJP.V11.I6.201
Barrett, L. F., Bliss-Moreau, E., Duncan, S. L., Rauch, S. L. y Wright, C. I. (2007). The amygdala and the experience of affect. Social Cognitive and Affective Neuroscience, 2(2), 73-83. https://doi.org/10.1093/SCAN/NSL042
Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J. y Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548-555. https://doi.org/10.1093/SCAN/NSQ080
Berthoux, C., Barre, A., Bockaert, J., Marin, P. y Bécamel, C. (2019). Sustained Activation of Postsynaptic 5-HT2A Receptors Gates Plasticity at Prefrontal Cortex Synapses. Cerebral Cortex (New York, N.Y. : 1991), 29(4), 1659-1669. https://doi.org/10.1093/CERCOR/BHY064
Blei, F., Fricke, J., Wick, J., Slot, J. C. y Hoffmeister, D. (2018). Iterative l-Tryptophan Methylation in Psilocybe Evolved by Subdomain Duplication. Chembiochem: A European Journal of Chemical Biology, 19(20), 2160-2166. https://doi.org/10.1002/CBIC.201800336
Bogenschutz, M. P. y Ross, S. (2018). Therapeutic applications of classic hallucinogens. In Current Topics in Behavioral Neurosciences (Vol. 36, pp. 361-391). Springer Verlag. https://doi.org/10.1007/7854_2016_464
Brenan, J. P. M., Schultes, R. E. y Hofmann, A. (1980). Plants of the Gods: Origins of Hallucinogenic Use. Kew Bulletin, 35(3), 708. https://doi.org/10.2307/4110029
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J. y Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279-296. https://doi.org/10.1016/J.NEUBIOREV.2008.09.002
Calvey, T. y Howells, F. M. (2018). An introduction to psychedelic neuroscience. In Progress in Brain Research (1st ed., Vol. 242). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.09.013
Carhart-Harris, R., Giribaldi, B., Watts, R., Baker-Jones, M., Murphy-Beiner, A., Murphy, R., Martell, J., Blemings, A., Erritzoe, D. y Nutt, D. J. (2021). Trial of Psilocybin versus Escitalopram for Depression. The New England Journal of Medicine, 384(15), 1402-1411. https://doi.org/10.1056/NEJMOA2032994
Carhart-Harris, R. L., Bolstridge, M., Rucker, J., Day, C. M. J., Erritzoe, D., Kaelen, M., Bloomfield, M., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Pilling, S., Curran, V. H. y Nutt, D. J. (2016). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. The Lancet Psychiatry, 3(7), 619-627. https://doi.org/10.1016/S2215-0366(16)30065-7
Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, A., Wise, R. G. y Nutt, D. J. (2012). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proceedings of the National Academy of Sciences, 109(6), 2138-2143. https://doi.org/10.1073/pnas.1119598109
Carhart-Harris, R. L. y Nutt, D. J. (2017). Serotonin and brain function: A tale of two receptors. Journal of Psychopharmacology, 31(9), 1091-1120. https://doi.org/10.1177/0269881117725915
Carhart-Harris, R. L., Roseman, L., Bolstridge, M., Demetriou, L., Pannekoek, J. N., Wall, M. B., Tanner, M., Kaelen, M., McGonigle, J., Murphy, K., Leech, R.,
Curran, H. V. y Nutt, D. J. (2017). Psilocybin for treatment-resistant depression: FMRI-measured brain mechanisms. Scientific Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-13282-7
Carod-Artal, F. J. (2015). Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurología (English Edition), 30(1), 42-49. https://doi.org/10.1016/J.NRLENG.2011.07.010
Castrén, E. y Antila, H. (2017). Neuronal plasticity and neurotrophic factors in drug responses. Molecular Psychiatry, 22(8), 1085-1095. https://doi.org/10.1038/MP.2017.61
Celada, P., Puig, M. V., Amargós-Bosch, M., Adell, A. y Artigas, F. (2004). The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. Journal of Psychiatry and Neuroscience, 29(4), 252-265.
Christoffel, D. J., Golden, S. A. y Russo, S. J. (2011). Structural and synaptic plasticity in stress-related disorders. Reviews in the Neurosciences, 22(5), 535-549. https://doi.org/10.1515/RNS.2011.044
Csabai, D., Wiborg, O. y Czéh, B. (2018). Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression. Frontiers in Cellular Neuroscience, 12, 24. https://doi.org/10.3389/FNCEL.2018.00024/BIBTEX
Culpepper, L., Lam, R. W. y McIntyre, R. S. (2017). Cognitive Impairment in Patients With Depression: Awareness, Assessment, and Management. The Journal of Clinical Psychiatry, 78(9), 3185. https://doi.org/10.4088/JCP.TK16043AH5C
D’ambrose, S. A. y Callahan, J. (2020). Legal Status of Psychedelic Drugs and Research Involving Possible Medical Uses. www.cga.ct.gov/olr
Davis, A. K., Barrett, F. S., May, D. G., Cosimano, M. P., Sepeda, N. D., Johnson, M. W., Finan, P. H. y Griffiths, R. R. (2021). Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry, 78(5), 481-489. https://doi.org/10.1001/JAMAPSYCHIATRY.2020.3285
Daws, R. E., Timmermann, C., Giribaldi, B., Sexton, J. D., Wall, M. B., Erritzoe, D., Roseman, L., Nutt, D. y Carhart-Harris, R. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nature Medicine, 28(4), 844-851. https://doi.org/10.1038/S41591-022-01744-Z
de Almeida, R. N., Galvão, A. C. de M., da Silva, F. S., Silva, E. A. dos S., Palhano Fontes, F., Maia-de-Oliveira, J. P., de Araújo, D. B., Lobão-Soares, B. y Galvão Coelho, N. L. (2019). Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Frontiers in Psychology, 10(JUN). https://doi.org/10.3389/FPSYG.2019.01234
De Gregorio, D., Enns, J. P., Nuñez, N. A., Posa, L. y Gobbi, G. (2018). D-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. In Progress in Brain Research (Vol. 242, pp. 69-96). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2018.07.008
de Veen, B. T. H., Schellekens, A. F. A., Verheij, M. M. M. y Homberg, J. R. (2017). Psilocybin for treating substance use disorders? In Expert Review of Neurotherapeutics (Vol. 17, Issue 2, pp. 203-212). Taylor & Francis. https://doi.org/10.1080/14737175.2016.1220834
de Vos, C. M. H., Mason, N. L. y Kuypers, K. P. C. (2021). Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Frontiers in Psychiatry, 12. https://doi.org/10.3389/FPSYT.2021.724606
Demain, A. L. y Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1-39. https://doi.org/10.1007/3-540-44964-7_1
Dinis-Oliveira, R. J. (2017). Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metabolism Reviews, 49(1), 84-91. https://doi.org/10.1080/03602532.2016.1278228
Duman, R. S., Heninger, G. R. y Nestler, E. J. (1997). A molecular and cellular theory of depression. Archives of General Psychiatry, 54(7), 597-606. https://doi.org/10.1001/ARCHPSYC.1997.01830190015002
Erritzoe, D., Roseman, L., Nour, M. M., MacLean, K., Kaelen, M., Nutt, D. J. y Carhart-Harris, R. L. (2018). Effects of psilocybin therapy on personality structure. Acta Psychiatrica Scandinavica, 138(5), 368-378. https://doi.org/10.1111/ACPS.12904
Franco-Molano, A. E. y Uribe-Calle, E. (2000). Agaricals and Boletals Fungi of Colombia (Hongos Agaricales y Boletales de Colombia). Biota Colombiana, 1(1), 25-43. http://www.redalyc.org/comocitar.oa?id=49110102
Goeleven, E., De Raedt, R., Baert, S. y Koster, E. H. W. (2006). Deficient inhibition of emotional information in depression. Journal of Affective Disorders, 93(1-3), 149-157. https://doi.org/10.1016/J.JAD.2006.03.007
Goldstein-Piekarski, A. N. y Williams, L. M. (2019). A Neural Circuit-Based Model for Depression Anchored in a Synthesis of Insights From Functional Neuroimaging. Neurobiology of Depression: Road to Novel Therapeutics, 241-256. https://doi.org/10.1016/B978-0-12-813333-0.00021-4
Griffiths, R. R., Johnson, M. W., Carducci, M. A., Umbricht, A., Richards, W. A., Richards, B. D., Cosimano, M. P. y Klinedinst, M. A. (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double blind trial. Journal of Psychopharmacology, 30(12), 1181-1197. https://doi.org/10.1177/0269881116675513
Grob, C. S., Danforth, A. L., Chopra, G. S., Hagerty, M., McKay, C. R., Halberstad, A. L. y Greer, G. R. (2011). Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Archives of General Psychiatry, 68(1), 71-78. https://doi.org/10.1001/ARCHGENPSYCHIATRY.2010.116
Guzmán, G. (2005). Species diversity of the genus Psilocybe (Basidiomycotina, Agaricales, Strophariaceae) in the world mycobiota, with special attention to hallucinogenic properties. International Journal of Medicinal Mushrooms, 7(1-2), 305-331. https://doi.org/10.1615/INTJMEDMUSHR.V7.I12.280
Halberstadt, A. L. (2015). Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behavioural Brain Research, 277, 99-120. https://doi.org/10.1016/J.BBR.2014.07.016
Hayes, C., Wahba, M. y Watson, S. (2022). Will psilocybin lose its magic in the clinical setting? Therapeutic Advances in Psychopharmacology, 12:2045. https://doi.org/10.1177/20451253221090822
Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. y Thompson, S. M. (2021). Harnessing psilocybin: Antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proceedings of the National Academy of Sciences of the United States of America, 118(17), e2022489118. https://www.pnas.org/doi/10.1073/pnas.2022489118
Hieronymus, F., Lisinski, A., Eriksson, E. y Østergaard, S. D. (2021). Do side effects of antidepressants impact efficacy estimates based on the Hamilton Depression Rating Scale? A pooled patient-level analysis. Translational Psychiatry, 11(1), 1-9. https://doi.org/10.1038/s41398-021-01364-0
Hofmann, A., Heim, R., Brack, A., Kobel, H., Frey, A., Ott, H., Petrzilka, T. y Troxler, F. (1959). Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helvetica Chimica Acta, 42(5), 1557-1572. https://doi.org/10.1002/HLCA.19590420518
Holmes, S. E., Scheinost, D., Finnema, S. J., Naganawa, M., Davis, M. T., DellaGioia, N., Nabulsi, N., Matuskey, D., Angarita, G. A., Pietrzak, R. H., Duman, R. S., Sanacora, G., Krystal, J. H., Carson, R. E. y Esterlis, I. (2019). Lower synaptic density is associated with depression severity and network alterations. Nature Communications, 10(1), 1-10. https://doi.org/10.1038/s41467-019-09562-7
Hutten, N. R. P. W., Mason, N. L., Dolder, P. C., Theunissen, E. L., Holze, F., Liechti, M. E., Varghese, N., Eckert, A., Feilding, A., Ramaekers, J. G. y Kuypers, K. P. C. (2021). Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacology and Translational Science, 4(2), 461-466. https://doi.org/10.1021/acsptsci.0c00099
Johnson, M. W. y Griffiths, R. R. (2017). Potential Therapeutic Effects of Psilocybin. Neurotherapeutics, 14(3), 734-740. https://doi.org/10.1007/s13311-017-0542-y
Johnson, M. W., Griffiths, R. R., Hendricks, P. S. y Henningfield, J. E. (2018). The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology, 142, 143-166. https://doi.org/10.1016/J.NEUROPHARM.2018.05.012
Lebedev, A. V., Lövdén, M., Rosenthal, G., Feilding, A., Nutt, D. J. y Carhart Harris, R. L. (2015). Finding the self by losing the self: Neural correlates of ego dissolution under psilocybin. Human Brain Mapping, 36(8), 3137-3153. https://doi.org/10.1002/hbm.22833
Lenz, C., Sherwood, A., Kargbo, R. y Hoffmeister, D. (2021). Taking Different Roads: l-Tryptophan as the Origin of Psilocybe Natural Products. ChemPlusChem, 86(1), 28-35. https://doi.org/10.1002/CPLU.202000581
Lieberman, J. A. y Shalev, D. (2016). Back to the future: Research renewed on the clinical utility of psychedelic drugs. Journal of Psychopharmacology, 30(12), 1198-1200. https://doi.org/10.1177/0269881116675755
Ling, S., Ceban, F., Lui, L. M. W., Lee, Y., Teopiz, K. M., Rodrigues, N. B., Lipsitz, O., Gill, H., Subramaniapillai, M., Mansur, R. B., Lin, K., Ho, R., Rosenblat, J. D., Castle, D. y McIntyre, R. S. (2021). Molecular Mechanisms of Psilocybin and Implications for the Treatment of Depression. CNS Drugs, 36(1), 17-30. https://doi.org/10.1007/S40263-021-00877-Y
Liu, W., Ge, T., Leng, Y., Pan, Z., Fan, J., Yang, W. y Cui, R. (2017). The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plasticity. https://doi.org/10.1155/2017/6871089
Lowe, H., Toyang, N., Steele, B., Valentine, H., Grant, J., Ali, A., Ngwa, W. y Gordon, L. (2021). The Therapeutic Potential of Psilocybin. Molecules, 26(10). https://doi.org/10.3390/MOLECULES26102948
Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V., Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A., Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-McKenney, K. M., Gray, J. A. y Olson, D. E. (2018). Psychedelics Promote Structural and Functional Neural Plasticity. Cell Reports, 23(11), 3170-3182. https://doi.org/10.1016/j.celrep.2018.05.022
Marks, M. y Cohen, I. G. (2021). Psychedelic therapy: a roadmap for wider acceptance and utilization. Nature Medicine, 27(10), 1669-1671. https://doi.org/10.1038/s41591-021-01530-3
Masand, P. S. y Gupta, S. (2002). Long-Term Side Effects of Newer-Generation Antidepressants: SSRIS, Venlafaxine, Nefazodone, Bupropion, and Mirtazapine. Annals of Clinical Psychiatry, 14(3), 175-182. https://doi.org/10.1023/A:1021141404535
Mateos-Aparicio, P. y Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. https://doi.org/10.3389/FNCEL.2019.00066/BIBTEX
McKenna, T. (1992). Food of the gods : the search for the original tree of knowledge : a radical history of plants, drugs and human evolution. Bantam Books.
Michaels, T. I., Purdon, J., Collins, A. y Williams, M. T. (2018). Inclusion of people of color in psychedelic-assisted psychotherapy: a review of the literature. BMC Psychiatry, 18(1). https://doi.org/10.1186/S12888-018-1824-6
Mithoefer, M. C., Grob, C. S. y Brewerton, T. D. (2016). Novel psychopharmacological therapies for psychiatric disorders: Psilocybin and MDMA. The Lancet Psychiatry, 3(5), 481-488. https://doi.org/10.1016/S2215-0366(15)00576-3
Moncrieff, J., Cooper, R. E., Stockmann, T., Amendola, S., Hengartner, M. P. y Horowitz, M. A. (2022). The serotonin theory of depression: a systematic umbrella review of the evidence. Molecular Psychiatry, 1-14. https://doi.org/10.1038/s41380-022-01661-0
Nichols, D. E. (2004). Hallucinogens. Pharmacology and Therapeutics, 101(2), 131-181. https://doi.org/10.1016/j.pharmthera.2003.11.002
Nichols, D. E. (2020). Psilocybin: from ancient magic to modern medicine. The Journal of Antibiotics, 73(10), 679-686. https://doi.org/10.1038/s41429-020-0311-8
Olson, D. E. (2018). Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics. Journal of Experimental Neuroscience, 12. https://doi.org/10.1177/1179069518800508
Pandarakalam, J. P. (2018). Challenges of treatment-resistant depression. In Psychiatria Danubina (Vol. 30, Issue 3, pp. 273-284). Medicinska Naklada Zagreb. https://doi.org/10.24869/psyd.2018.273
Penn, E. y Tracy, D. K. (2012). The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Therapeutic Advances in Psychopharmacology, 2(5), 179-188. https://doi.org/10.1177/2045125312445469
Perez-Caballero, L., Torres-Sanchez, S., Romero-López-Alberca, C., González-Saiz, F., Mico, J. A. y Berrocoso, E. (2019). Monoaminergic system and depression. Cell and Tissue Research, 377(1), 107-113. https://doi.org/10.1007/S00441-018-2978-8/FIGURES/1
Renner, F., Lobbestael, J., Peeters, F., Arntz, A., Huibers, M., Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., Burmeister, M., Cohen-Woods, S., Etain, B., Fisher, H. L., Goldman, N., Guillaume, S., Horwood, J., Juhasz, G., … Estimates, G. H. (2017). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Journal of Affective Disorders, 7(3), 1-12. https://doi.org/10.1038/s41386-019-0324-9
Rodríguez-Arce, J. M. y Winkelman, M. J. (2021). Psychedelics, Sociality, and Human Evolution. Frontiers in Psychology, 12, 4333. https://doi.org/10.3389/FPSYG.2021.729425/BIBTEX
Rosenzweig-Lipson, S., Beyer, C. E., Hughes, Z. A., Khawaja, X., Rajarao, S. J., Malberg, J. E., Rahman, Z., Ring, R. H. y Schechter, L. E. (2007). Differentiating antidepressants of the future: Efficacy and safety. Pharmacology & Therapeutics, 113(1), 134-153. https://doi.org/10.1016/J.PHARMTHERA.2006.07.002
Ross, S., Bossis, A., Guss, J., Agin-Liebes, G., Malone, T., Cohen, B., Mennenga, S. E., Belser, A., Kalliontzi, K., Babb, J., Su, Z., Corby, P. y Schmidt, B. L. (2016). Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: A randomized controlled trial. Journal of Psychopharmacology, 30(12), 1165-1180. https://doi.org/10.1177/0269881116675512
Rucker, J. J. H., Iliff, J. y Nutt, D. J. (2018). Psychiatry & the psychedelic drugs. Past, present & future. Neuropharmacology, 142, 200-218. https://doi.org/10.1016/J.NEUROPHARM.2017.12.040
Santos, H. C. y Marques, J. G. (2021). What is the clinical evidence on psilocybin for the treatment of psychiatric disorders? A systematic review. Porto Biomedical Journal, 6(1), e128. https://doi.org/10.1097/J.PBJ.0000000000000128
Sarparast, A., Thomas, K., Malcolm, B. y Stauffer, C. S. (2022). Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology, 239(6), 1945-1976. https://doi.org/10.1007/S00213-022-06083-Y
Sellers, E. M., Romach, M. K. y Leiderman, D. B. (2018). Studies with psychedelic drugs in human volunteers. Neuropharmacology, 142, 116-134. https://doi.org/10.1016/J.NEUROPHARM.2017.11.029
Stebelska, K. (2013). Fungal hallucinogens psilocin, ibotenic acid, and muscimol: Analytical methods and biologic activities. Therapeutic Drug Monitoring, 35(4), 420-442. https://doi.org/10.1097/FTD.0b013e31828741a5
Strauss, D., Ghosh, S., Murray, Z. y Gryzenhout, M. (2022). An Overview on the Taxonomy, Phylogenetics and Ecology of the Psychedelic Genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Frontiers in Forests and Global Change, 0, 79. https://doi.org/10.3389/FFGC.2022.813998
Stroud, J. B., Freeman, T. P., Leech, R., Hindocha, C., Lawn, W., Nutt, D. J., Curran, H. V. y Carhart-Harris, R. L. (2018). Psilocybin with psychological support improves emotional face recognition in treatment-resistant depression. Psychopharmacology, 235(2), 459-466. https://doi.org/10.1007/s00213-017-4754-y
Van Court, R. C., Wiseman, M. S., Meyer, K. W., Ballhorn, D. J., Amses, K. R., Slot, J. C., Dentinger, B. T. M., Garibay-Orijel, R. y Uehling, J. K. (2022). Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biology, 126(4), 308-319. https://doi.org/10.1016/J.FUNBIO.2022.01.003
Vargas, M. V, Meyer, R., Avanes, A. A., Rus, M. y Olson, D. E. (2021). Psychedelics and Other Psychoplastogens for Treating Mental Illness. Frontiers in Psychiatry, 12, 727117. https://doi.org/10.3389/fpsyt.2021.727117
Vasco, A., Esperanza, A. y Molano, F. (2021). Diversity of Colombian macrofungi (Ascomycota - Basidiomycota). v1.2. Universidad de Antioquia. Dataset/Checklist. https://doi.org/10.15472/o8vo29
Vollenweider, F. X. y Kometer, M. (2010). The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. In Nature Reviews Neuroscience(Vol. 11, Issue 9, pp. 642-651). https://doi.org/10.1038/nrn2884
Wasson, R. G. (1957). Seeking the Magic Mushroom. LIFE Magazine, 109-120.
Watts, R., Day, C., Krzanowski, J., Nutt, D. y Carhart-Harris, R. (2017). Patients’ Accounts of Increased “Connectedness” and “Acceptance” After Psilocybin for Treatment-Resistant Depression. Journal of Humanistic Psychology, 57(5), 520-564. https://doi.org/10.1177/0022167817709585
World Health Organization. (2021). Depression. Depression. https://www.who.int/news-room/fact-sheets/detail/depression
Yaden, D. B. y Griffiths, R. R. (2021). The Subjective Effects of Psychedelics Are Necessary for Their Enduring Therapeutic Effects. ACS Pharmacology and Translational Science, 4(2), 568-572. https://doi.org/10.1021/acsptsci.0c00194
Yang, T., Nie, Z., Shu, H., Kuang, Y., Chen, X., Cheng, J., Yu, S. y Liu, H. (2020). The Role of BDNF on Neural Plasticity in Depression. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00082
Zeiss, R., Gahr, M., & Graf, H. (2021). Rediscovering Psilocybin as an Antidepressive Treatment Strategy. Pharmaceuticals, 14(10). https://doi.org/10.3390/PH14100985
Zhang, G. y Stackman, R. W. (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Frontiers in Pharmacology, 6(OCT), 225. https://doi.org/10.3389/FPHAR.2015.00225/BIBTEX