DOI: 10.17151/bccm.2024.28.1.7
How to Cite
Barros-Barrios, M. M., Restrepo-García, A. M., Narváez-Solarte, W., & Soto-Giraldo, A. (2024). Compound plant extracts effect on Diaphorina citri (Hemiptera: Liviidae) and its parasitoid Tamarixia radiata (Hymenoptera: Eulophidae. Boletín Científico. Centro De Museos, 28(1), 125–138. https://doi.org/10.17151/bccm.2024.28.1.7

Authors

Mayelis M. Barros-Barrios
Universidad de Caldas
mayelisbarros27799@ucaldas.edu.co
https://orcid.org/0000-0002-2634-5408
Perfil Google Scholar
Ana María Restrepo-García
Universidad de Caldas
ana.restrepo18390@ucaldas.edu.co
https://orcid.org/0000-0002-9596-320X
Perfil Google Scholar
William Narváez-Solarte
Universidad de Caldas
wnarvaez@ucaldas.edu.co
Perfil Google Scholar
Alberto Soto-Giraldo
Universidad de Caldas
alberto.soto@ucaldas.edu.co
https://orcid.org/0000-0002-9727-8919
Perfil Google Scholar

Abstract

Objective: To evaluate the effect of extracts composed of Murraya paniculata, Cocos nucifera, Syzygium aromaticum, and Psidium guajava on Diaphorina citri and Tamarixia radiata. Scope: Provide management alternatives for the control of D. citri without affecting its primary parasitoid. Methodology: Extraction of active principles from plant species was carried out by Soxhlet extraction and vacuum rotaevaporation, determination of volatile compounds by solid phase micro extraction (SPME), and evaluation of its effect on the insects with double-choice olfactometry tests, analyzing the results using the preference index (IP=2T/T+C), contrasted by analysis of variance and comparison of means with Duncan’s test. Main Results: D. citri showed a preference for the volatile compounds of M. paniculata (IP 1.7) and no preference for S. aromaticum (IP 0.9), the Evaluations with C. nucifera and P. guajava yielded an IP of 1.2 and 1 respectively, without presenting significant differences in the choice, however, the individuals died minutes after the interaction with the extracts. On the other hand, in the evaluations for T. radiata, no significant differences were detected between the means of the treatment preference indices. Conclusions: The evaluated species presented attractive, repellent and insecticidal biological activity on D. citri without affecting its parasitoid T. radiata. These findings support the feasibility of developing alternative management proposals with compound plant extracts, suggesting their integration into a management plan. of the plague.

Badgujar, R. H., Mendki, P. S. y Kotkar H. M. (2017). Management of Plutella xylostella using Cinnamomum zeylanicum and Syzygium aromaticum extracts and their major secondary metabolites. Biopesticides International, 13(2), 113-126.

Bale, J. S., Van Lenteren, J. C. y Bigler, F. (2008). Biological control and sustainable food production. Philosophical Transactions of the Royal Society B, 363(1492), 761-776. https://doi.org/10.1098/rstb.2007.2182

Barman, J. C. y Zeng, X. (2014). Effect of Guava Leaf Extract on Citrus Attractiveness to Asian Citrus Psyllid Diaphorina citri Kuwayama. Pakistan Journal of Zoology, 46(4), 1117-1124.

Benelli, G., Govindarajan, M., Rajeswary, M., Vaseeharan, B., Alyahya, S. A., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M. y Maggi, F. (2018). Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicology and environmental Safety, 148, 781-786.

Carvajal Rojas, L., Hata Uribe, Y., Sierra Martínez, N. y Rueda Niño, D. (2009). Análisis fitoquímico preliminar de hojas, tallos y semillas de Cupatá (Strychnos schultesiana Krukoff). Revista Colombia Forestal, 12(1), 161-170. Cavarrubias Gutiérrez, I., Mora Aguilera, G., Salcedo Baca, D., Depaolis, F. J. R., Hinojosa, R., Mora Flores, J. S., Cíntora González,

C. L., Instituto Interamericano de Cooperación para la Agricultura y Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. (2010). Evaluación del impacto económico de Huanglongbing (HLB) en la cadena citrícola mexicana. Instituto Interamericano de Cooperación para la Agricultura.

Cázares Alonso, N. P., Verde Star, M. J., López Arroyo, J. I. y Almeyda León, I. H. (2014). Evaluación de diferentes extractos vegetales contra el psílido asiático de los cítricos Diaphorina citri (Hemiptera: Liviidae). Revista Colombiana de Entomología, 40(1), 67-73.

Chen, X. D., Gill, T. A., Ashfaq, M., Pelz‐Stelinski, K. S. y Stelinski, L. L. (2018). Resistance to commonly used insecticides in Asian citrus psyllid: Stability and relationship to gene expression. Journal of Applied Entomology, 142(10), 967-977. https://doi.org/10.1111/jen.12561

Coutinho-Abreu, I. V, Forster, L., Guda, T., Ray, A. (2014b). Odorants for Surveillance and Control of the Asian Citrus Psyllid (Diaphorina citri). PLoS One, 9(10), e109236. https://doi.org/10.1371/journal.pone.0109236

Coutinho-Abreu, I. V., Mcinally, S., Forster, L., Luck, R. y Ray, A. (2014a). Odor coding in a disease-transmitting herbivorous insect, the Asian citrus psyllid. Chemical Senses, 39(6), 539-549.

Deepa J. y Kashmira J. G. (2023). A Brief Review on Murraya paniculata (Orange Jasmine): pharmacognosy, phytochemistry and ethanomedicinal uses. Journal of Pharmacopuncture, 26(1), 10-17. https://doi.org/10.3831/KPI.2023.26.1.10.

Departamento de Insectos Entomófagos del Centro Nacional de Referencia de Control Biológico. (2015). Manual de reproducción masiva de Tamarixia radiata, principal parasitoide del psílido asiático de los cítricos, vector del HLB. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria y Unidad de Promoción y Vinculación-Senasica. https://docslib.org/doc/1442836/manual-de-tamarixia-radiata.

Díaz, J. H. (2016). Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness Environmental Medicine, 27(1), 153-163. https://doi.org/10.1016/j.wem.2015.11.007

Fancelli, M., Borges, M., Laumann, R. A., Pickett, J. A., Birkett, A. y Blassioli-Moraes, M. C. (2018). Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina citri, is Reduced by Terpenoids from the Non-Host Cashew. Journal of Chemical Ecology, 44, 397-405. https://doi.org/10.1007/s10886-018-0937-1

Figueira, C. N. T., Dos Santos, R. M., Campesatto. E. A., Lúcio, M., De Araújo, E. C. y De Assis Bastos M. L. (2013). Biological activity of the Cocos nucifera L. and its profile in the treatment of diseases: A review. Journal of Chemical and Pharmaceutical Research, 5(5), 297–302.

Gottwald, T. R., Hall, D. G., Kriss, A. B., Salinas, E. J., Parker, P. E., Beattie, G. A. C. y Nguyen, M. C. (2014). Orchard and nursery dynamics of the effect of interplanting citrus with guava for huanglongbing, vector, and disease management. Crop Protection, 64, 93-103. https://doi.org/10.1016/j.cropro.2018.02.014

Grafton-Cardwell, E. E., Stelinski, L. L. y Stansly, P. A. (2013). Biology and Management of Asian Citrus Psyllid, Vector of the Huanglongbing Pathogens. Annual Review of Entomology, 58, 413-432. https://doi.org/10.1146/annurev-ento-120811-153542

Gross, J., Gallinger, J. y Görg, L. M. (2022). Interactions between phloem-restricted bacterial plant pathogens, their vector insects, host plants, and natural enemies, mediated by primary and secondary plant metabolites. Entomologia Generalis, 42(2), 185-215. https://doi.org/10.1127/entomologia/2021/1254

Hall, D. G., Borovsky, D., Chauhan, K. R. y Shatters, R. G. (2018). An evaluation of mosquito repellents and essential plant oils as deterrents of Asian citrus psyllid. Crop Protect, 108, 87-94. https://doi.org/10.1016/j.cropro.2018.02.014

Hill, N., Lenglet, A., Arnéz, A. M. y Carneiro, I. (2007). Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon. British Medical Journal, 335. https://doi.org/10.1136/bmj.39356.574641.55

Hollingsworth, R. G. (2005). Limonene, a Citrus Extract, for Control of Mealybugs and Scale Insects. Journal of Economic Entomology, 98(3), 772-779. https://doi.org/10.1603/0022-0493-98.3.772

Instituto Colombiano Agropecuario. (3 de septiembre de 2012). El HLB o Huanglongbing aún no ha llegado a Colombia. https://www.ica.gov.co/noticias/agricola/2012/el-hlb-o-huanglongbing-aun-no-ha-llegado-a-colombi.aspx

Killiny, N., Nehela, Y., George, J., Rashidi, M., Stelinski, L. L. y Lapointe, S. L. (2021). Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing. Plant Science, 308, 110930. https://doi.org/10.1016/j.plantsci.2021.110930

Kogan, M. y Goeden, R. D. (1970). The Host-Plant Range of Lema trilineata daturaphila (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 63(4), 1175-1280. https://doi.org/10.1093/aesa/63.4.1175

Lin, H., Kogan, M. y Fischer, D. (1990). Induced Resistance in Soybean to the Mexican Bean Beetle (Coleoptera: Coccinellidae): Comparisons of Inducing Factors. Environmental Entomology, 19(6), 1852–1857.

Ling, S., Rizvi, S. A., Xiong, T., Liu, J., Gu, Y., Wang, S. y Zeng, X. (2022). Volatile Signals from Guava Plants Prime Defense Signaling and Increase Jasmonate-Dependent Herbivore Resistance in Neighboring Citrus Plants. Frontiers in plant science, 13. https://doi.org/10.3389/fpls.2022.833562

Luis-Pantoja, M., Paredes-Tomás, C., Uneau, Y., Myrie, W., Morillon, R., Satta, E., Contaldo, N., Pacini, F. y Bertaccini, A. (2021). Identification of ‘Candidatus Phytoplasma’ species in “huanglongbing” infected citrus orchards in the Caribbean. European Journal of Plant Pathology, 160, 185-198.

Mesa, V. A. M., Marín, P. A., Ocampo, O., Calle, J. y Monsalve, Z. (2019). Fungicidas a partir de extractos vegetales: una alternativa en el manejo integrado de hongos fitopatógenos. RIA. Revista de investigaciones agropecuarias, 45(1), 23-30. Ministerio de Agricultura de Colombia. (2021). Cadena de cítricos indicadores e instrumentos, segundo trimestre. https://sioc.minagricultura.gov.co/Citricos/Documentos/2021-06-30%20Cifras%20Sectoriales.pdf

Mittal, M., Gupta, N., Parashar, P., Mehra, V. y Khatri, M. (2014). Phytochemical evaluation and pharmacological activity of syzygium aromaticum: A comprehensive review. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 67-72.

Niogret, J., Kendra, P. E, Epsky, N. D. y Heath, R. R. (2011). Comparative analysis of Terpenoid Emissions from Florida Host Trees of the Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist, 94(4), 1010-1017. https://doi.org/10.1653/024.094.0439

Oliver, J. E., Ali, M. E., Waliullah, S., Price, J., Jacobs, J., Hoppers, A., Evans, R., Dowdy, M. y Curry, S. (2020). Huanglongbing, caused by ‘Candidatus Liberibacter Asiaticus’, detected in new locations across southern and Coastal Georgia. Plant Health Progress, 21(1), 31-35. https://doi.org/10.1094/PHP-09-19-0064-S

Owolabi, M. S. Kazeem, W. Dosoky, N. y Setzer W. N. 2013. The Leaf Essential Oil Composition of Eugenia javanica from South West Nigeria and Insecticidal Activity against Sitophilus zeamais. The African Journal of Plant Science and Biotechnology 7(1): 86-88. Pimentel-Farias, A., Vieira-Teodoro, A., Dos Passos, E. M., De Sena-Filho, J. G., Dos Santos, M. C., Rabelo-Coelho, C. y

Viteri-Jumbo, L. (2018). Bioactividad de aceites vegetales a Orthezia praelonga (Hemiptera: Sternorrhyncha: Orthezidae) y selectividad a su predador Ceraeochrysa caligata (Neuroptera: Chrysopidae). Revista de Protección Vegetal, 33(3).

PROCOLOMBIA. (5 de octubre de 2021). El buen momento de los cítricos colombianos. https://procolombia.co/colombiatrade/exportador/articulos/el-buen-momento-de-los-citricos-colombianos

Ramírez-Godoy, A., Vera-Hoyos, M. D. P., Jiménez-Beltrán, N. y Restrepo-Diaz, H. (2018). Evaluation of Yellow Sticky Traps Baited with Citrus Scents, Coconut Oil, and Commercial Lures as a Simple Tool to Monitor Diaphorina citri (Hemiptera: Liviidae) Under Tropical Dry Forest Conditions. Journal of economic entomology, 111(6), 2746-2754.

Restrepo García, A. M. y Soto Giraldo, A. (2017). Control alternativo de Diaphorina citri Kuwayama (Hemiptera: Liviidae) utilizando caldo sulfocálcico. Boletín Científico. Centro de Museos. Museo de Historia Natural, 21(2), 51-60. https://doi.org/10.17151/bccm.2017.21.2.4.

Sanabria Galindo, A., Universidad Nacional de Colombia y Departamento de Farmacia. (1983). Análisis fitoquímico preliminar. Metodología y su aplicación en la evaluación de 40 plantas de la familia Compositeae.

Santos Silva, M., Patt, J. M., Barbosa, C., Fancelli, M., Ribeiro Mesquita, P. R., Rodrigues, F. y Selbach Schnadelbach, A. S. (2023). Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) responses to plant-associated volatile organic compounds: A minireview.Crop Protection, 169. https://doi.org/10.1016/j.cropro.2023.106242

Sato, R., Dang, K. M., McPherson, B. G. y Brown, A. C. (2010). Anticancer activity of guava (Psidium guajava) extracts. Journal of Complementary and Integrative Medicine, 7(1), 43. https://doi.org/10.2202/1553-3840.1361

Schmidt, K. y Podmore, I. (2015). Solid Phase Microextraction (SPME) Method Development in Analysis of Volatile Organic Compounds (VOCS) As Potential Biomarkers of Cancer. Journal of Molecular Biomarkers and Diagnosis, 6(6). http://dx.doi.org/10.4172/2155-9929.1000253

Sheikh, Z., Amani, A., Basseri, H. R., Moosa Kazemi, S. H., Sedaghat, M. M., Azam, K., Azizi, M. y Amirmohammadi, F. (2021).Repellent Efficacy of Eucalyptus globulus and Syzygium aromaticum Essential Oils against Malaria Vector, Anopheles stephensi (Diptera: Culicidae). Iranian Journal of Public Health, 50(8), 1668-1677. https://doi.org/10.18502/ijph.v50i8.6813

Silva, D. B., Jiménez, A., Urbaneja, A., Pérez-Hedo, M. y Bento, J. M. S. (2021). Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore. Pest Management Science, 77(9), 4168-4180. https://doi.org/10.1002/ps.6454

Silva, J. A. A., Hall, D. G., Gottwald, T. R., Andrade, M. S., Maldonado, W., Alessandro, R. T., Lapointe, S. L., Andrade, E. C. y

Machado, M. A. (2016). Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri. Crop Protection, 84, 14-20. https://doi.org/10.1016/j.cropro.2016.02.006

Usha Rani, P., Venkateshwaramma, T. y Devanand, P. (2011). Bioactivities of Cocos nucifera L. (Arecales: Arecaceae) and Terminalia catappa L. (Myrtales: Combretaceae) Leaf Extracts as post-harvest grain protectants against four major stored product pests. Journal of Pest Science 84, 235-247. https://doi.org/10.1007/s10340-010-0345-y

Wei, X., Mira, A., Yu, Q. y Gmitter, F. G. (2021). The Mechanism of Citrus Host Defense Response Repression at Early Stages of Infection by Feeding of Diaphorina citri Transmitting Candidatus Liberibacter asiaticus. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.635153

Yan, Z., Zhang, Q., Zhang, N., Li, W., Chang, C., Xiang, Y., Xya, C., Jiang, T., He, W., Luo, J. y Xu, Y. (2020). Repellency of forty‐one aromatic plant species to the Asian citrus psyllid, vector of the bacterium associated with huanglongbing. Ecology and Evolution, 10(23), 12940–12948.

Zaka, S. M., Zeng, X. N., Holford, P. y Beattie, G. A. C. (2010). Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Science, 17(1), 39-45. https://doi.org/10.1111/j.1744-7917.2009.01271.x

Zhong, Z. F., Zhou, X. J., Lin, J. B., Liu, X. J., Shao, J., Zhong, B. L. y Peng, T. (2019). Effects of leaf colorness, pigment contents and allelochemicals on the orientation of the Asian citrus psyllid among four Rutaceae host plants. BMC Plant Biology, 19(254), 1-21. https://doi.org/10.1186/s12870-019-1818-7
Sistema OJS - Metabiblioteca |