DOI: 10.17151/bccm.2023.27.2.1
How to Cite
Torres-Torres, J. J., Quinto Mosquera, H., & Medina-Arroyo, H. H. (2023). Woody species diversity and its relationship with environmental variables in post-mining forests of the Biogeographic Chocó. Boletín Científico. Centro De Museos, 27(2), 13–29. https://doi.org/10.17151/bccm.2023.27.2.1

Authors

Jhon Jerley Torres-Torres
Universidad Nacional de Colombia
jhtorrest@unal.edu.co
https://orcid.org/0000-0002-0503-837X
Perfil Google Scholar
Harley Quinto Mosquera
Universidad Tecnológica del Chocó
d-harley.quinto@utch.edu.co
https://orcid.org/0000-0001-5989-4334
Perfil Google Scholar
Henry Hernan Medina-Arroyo
Universidad Tecnológica del Chocó
d-henry.hernan@utch.edu.co
https://orcid.org/0000-0002-9596-9054

Abstract

Objective: To analyze the diversity of woody species and their relationship with environmental variables in post-mining forests of the Biogeographic Chocó. Materials and methods: Ten sampling units of 0.25 ha were established in post-mining forests of 15 and 35 years of recovery (five in each forest). Woody vegetation with DBH ≥ 5 cm was characterized. Soil samples were taken and species richness was graphically represented in curves of species area and individual species. The species abundance distribution (SAD) was analyzed. The ordination was carried out using the RDA and, finally, variance partitioning was performed, selecting the soil matrix (specifically phosphorus - P and potassium - K content) and spatial matrix (PCNM 2) as variables. Results: It was observed that 15-year post-mining forests were more diverse than 35-year forests. Species abundance was log-normally distributed and the ordination allowed the identification of four groups. One of the groups was explained by plot location (spatial variable) and three by environmental variables (P and K content). The variance partitioning allowed us to identify that the differences in floristic composition of the 15 and 35 year old post-mining forests are mostly explained by environmental variables with 40%, while at the spatial level the variation is null. Conclusion: The floristic variability of the sampled sites is related to the type and intensity of mining intervention, soil nutrients and, to some extent, to the location of tree individuals.

Alday, J. G., Marrs, R. H. y Martínez-Ruiz, C. (2010). The importance of topography and climate on short-term vegetation of coal wastes in Spain. Ecological Engineering, 36, 579-585. https://doi.org/10.1016/j.ecoleng.2009.12.005

Álvarez-Berríos, N. L. y Mitchell-Aide, T. (2015). Global demand for gold is another threat for tropical forests. Environmental Research Letters, 10(1), 014006. https://doi.org/10.1088/1748-9326/10/1/014006

Álvarez-Clare, S., Mack, M. C. y Brooks, M. (2013). A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology, 94(7), 1540-1551. https://sci-hub.se/10.1890/12-2128.1

Asner, G. P., Llactayo, W., Tupayachi, R. y Luna, E. R. (2013). Elevated rates of gold mining in the Amazon revealed through highresolution monitoring. Proceedings of the National Academy of Sciences of the United States of America, 110(46), 18454-18459. https://doi.org/10.1073/pnas.1318271110

Borcard, D. y Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling,153(1-2), 51-68. https://doi.org/10.1016/s0304-3800(01)00501-4

Di Rienzo, J. A., Casanoves, F., Pla, L., Vilchez-Mendoza, S. y Di Rienzo, M. J. (2010). Software de ecología cuantitativa Qeco: un enfoque colaborativo. Revista Latinoamericana de Conservación, 1, 73-75.

Dray, S., Legendre, P. y Peres-Neto, P. R. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196(3-4), 483-493. https://doi.org/10.1016/j.ecolmodel.2006.02.015

Duque, A., Muller-Landau, H. C., Valencia, R., Cardenas, D., Davies, Stuart A., de Oliveira, A. J., Romero-Saltos, H. y Vicentini, A. (2016). Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation, 26, 669-686. https://doi.org/10.1007/s10531-016-1265-9

Espejo, J. C., Messinger, M., Román-Dañobeytia, F., Ascorra, C. y Luis, E. (2018). Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sensing,10, 1903. https://doi.org/10.3390/rs10121903

Feldpausch, T. R., Rondon, M. A., Fernandes, E. C. M., Riha, S. J. y Wandelli, E. (2004). Carbon and nutrient accumulation in secondary forests regenerating on pastures in central Amazonia. Ecological Applications, 14(4), 164-176. https://doi.org/10.1890/01-6015

Fuentes, H. J., Ferrucho, C. C. y Martínez, W. A. (2021). La minería y su impacto en el desarrollo económico en Colombia. Apuntes del CENES, 40(71), 189-216. https://doi.org/10.19053/01203053.v40.n71.2021.12225

González-Caro, S., Duivenvoorden, J. F., Balslev, H., Cavelier, J. Grández, C., Macía, M. J., Romero-Saltos, H., Sánchez, M.

Valencia, R. y Duque, Á. (2020). Scale-dependent drivers of the phylogenetic structure and similarity of tree communities in northwestern Amazonia. Journal of Ecology, 00, 1-12

Hedin, L. O., Brookshire, J., D. Menge y Barron, A. R. (2009). The Nitrogen Paradox in Tropical Forest Ecosystems. The annual review of ecology, evolution, and systematics, 40, 613-635. https://doi.org/10.1146/annurev.ecolsys.37.091305.110246

Kalamandeen, M., Gloor, E., Johnson, I., Agard, S., Katow, M., Vanbrooke, A., Ashley, D., Batterman, S. A., Ziv, G., HolderCollins, K., Phillips, O. L., Brondizio, E. S., Vieira, I., y Galbraith, D. (2020). Limited biomass recovery from gold mining in Amazonian forests. Journal of Applied Ecology, 57(9), 1730–1740. https://doi.org/10.1111/1365-2664.13669

Kraft, N., Valencia, R. y Ackerly, D. D. (2008). Functional Traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. https://doi.org/10.1126/science.1160662

Lara-Rodríguez, J. S., Tosi, A. y Altimiras-Martin, A. (2020). Minería del platino y el oro en Chocó: pobreza, riqueza natural e informalidad. Revista de Economía Institucional, 22(42). https://ssrn.com/abstract=3495556

Legendre, P. (2008). Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Journal of plant Ecology, 1(1), 3-8. https://doi.org/10.1093/jpe/rtm001

Legendre, P. y Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecología, 129(2), 271-280. https://doi.org/10.1007/s004420100716

Legendre, P. y Legendre, L. F. J. (2012). Numerical ecology (Vol. 24). Elsevier.

Legendre, P., Borcard, D. y Peres-Neto, P. R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs,75(4), 435-450. https://doi.org/10.1890/05-0549

Loke, L. H. L. y Chisholm, R. A. (2023). Unveiling the transition from niche to dispersal assembly in ecology. Nature, 618, 537-542. https://doi.org/10.1038/s41586-023-06161-x

Mena-Mosquera, V. E., Andrade, H. J. y Torres-Torres, J. J. (2020). Composición florística, estructura y diversidad del bosque pluvial tropical de la subcuenca del río Munguidó, Quibdó, Chocó, Colombia. Entramado, 16(1), 204-215. https://doi. org/10.18041/1900-3803/entramado.1.6109

Mosquera-Andrade, D. H. (2014). Motores de la deforestación del bosque húmedo Tropical bh-T de la región noroccidental colombiana. Investigación, Biodiversidad y Desarrollo, 33(2), 96-104. http://dx.doi.org/10.18636/riutch.v33i2%20Jul-Dic.519

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. y Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. https://doi.org/10.1038/35002501

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O’Hara, R. y Wagner, H. (2013). Vegan: community ecology package. R Package Version. 2.1-25/r2418. http://R-Forge.Rproject.org/projects/vegan/

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R. y Legendre, P. (2019). Vegan: Community ecology package. R package version 2–5.

Oktavia, D., Setiadib, Y. y Hilwanc, I. (2015). The comparison of soil properties in heath forest and posttin mined land: Basic for ecosystem restoration. Procedia Environmental Sciences, 28, 124-131. https://doi.org/10.1016/j.proenv.2015.07.018

Pan, Y., Birdsey, R. A., Phillips, O. L. y Jackson, R. B. (2013). The Structure, Distribution, and Biomass of the World’s Forests. Annual Review of Ecology, Evolution, and Systematics, 44(1): 593-622. https://doi.org/10.1146/annurev-ecolsys-110512-135914

Paoli, G. D., Curran, L. M. y Zak, D. R. (2005). Phosphorus efficiency of aboveground productivity in Bornean rain forest: evidence against the unimodal efficiency hypothesis. Ecology, 86(6), 1548-1561. https://doi.org/10.1890/04-1126

Peres-Neto, P. R., Legendre, P., Dray, S. y Borcard, D. (2006). Variación partición de matrices de datos de especies: Estimación y comparación de fracciones. Ecología, 87(10), 2614-2625.

Poveda, I. C., Rojas, C., Rudas, A. y Rangel-C., O. (2004). El Chocó biogeográfico: Ambiente Físico. En O Rangel-C. (eds), Colombia Diversidad Biótica IV. El Chocó biogeográfico/ Costa Pacífica. Instituto de Ciencias Naturales. Universidad Nacional de Colombia.

Prado, P. I. y Miranda, M. D. (2013) Fitting species abundance model with maximum likelihood Quick reference for sads package. 1-20. https://cran.r-project.org/web/packages/sads/vignettes/sads_intro.pdf

Quinto, H., Cuesta-Nagles, J., Mosquera-Sánchez, I., Palacios-Hinestroza, L. y Peñaloza, H. (2013). Biomasa vegetal en zonas degradadas por minería en un bosque pluvial tropical del Chocó Biogeográfico. Revista Biodiversidad Neotropical, 3(1), 53-64. https://dialnet.unirioja.es/servlet/articulo?codigo=5168136

Quinto, H. y Moreno, F. (2014). Diversidad florística arbórea y su relación con el suelo en un bosque pluvial tropical del Chocó biogeográfico. Revista Árvore, 38(6), 1123-1132. https://doi.org/10.1590/S0100-67622014000600017

Quinto, H. y Moreno, F. (2017). Net Primary Productivity and Edaphic Fertility in Two Pluvial Tropical Forests in the Choco Biogeographical Region of Colombia. PLOS ONE, 12(4), e0175620. https://doi.org/10.1371/journal.pone.0175620

Quinto, H., Ayala-Vivas, G. y Gutiérrez, H. (2022). Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó biogeográfico. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 514-528. https://doi.org/10.18257/raccefyn.1615

R Development Core Team. (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Ramírez, G. y Rangel-Ch., J. O. (2019). Sucesión vegetal en áreas de minería a cielo abierto en el bosque pluvial tropical del departamento del Chocó, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(169), 673-688. https://doi.org/10.18257/raccefyn.896

Ramírez, G., Quinto, H., Vargas, L. y Rangel-Ch., O. (2019). Temporary Effect of Mining on Breathing and on the Physicochemical Conditions of Soil. Modern Environmental Science and Engineering, 5(9), 837-848.

Sansupa, C., Purahong, W., Wubet, T., Tiansawat, P., Pathom-Aree, W., Teaumroong, N., Chantawannakul, P., Buscot, F., Elliott, S. y Disayathanoowat, T. (2021). Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS ONE, 16(4), e0248806. https://doi.org/10.1371/journal.pone.0248806

Semy, K. y Singh, M. R. (2021). Comparative Assessment on the physico-chemical properties of coal mining affected and nonaffected forest soil at Changki, Nagaland. Indian Journal of Ecology, 48(1), 36-42.

Torres-Torres, J. J., Mena-Mosquera, V. E. y Álvarez, E. (2017). Carbono aéreo almacenado en tres bosques del Jardín Botánico del Pacífico, Chocó, Colombia. Entramado, 13, 200-209. https://doi.org/10.18041/entramado.2017v13n1.25110

Diversidad de especies leñosas y su relación con variables ambientales en bosques post-minería del Chocó Biogeográfico

Torres-Torres, J. J., Mena-Mosquera, V. E. y Álvarez, E. (2016). Composición y diversidad florística de tres bosques húmedos tropicales de edades diferentes, en el Jardín Botánico del Pacífico, municipio de Bahía Solano, Chocó, Colombia. Revista Biodiversidad Neotropical, 6(1), 12-21. https://doi.org/10.18636/bioneotropical.v6i1.197.g376

Valois-Cuesta, H. y Martínez-Ruiz, C. (2016). Vulnerabilidad de los bosques naturales en el Chocó biogeográfico colombiano: actividad minera y conservación de la biodiversidad. Bosque (Valdivia), 37(2), 295-305. http://dx.doi.org/10.4067/S0717-92002016000200008

Valois-Cuesta, H., Martínez-Ruiz, C. y Quinto-Mosquera, H. (2022). Revegetación natural de áreas afectadas por minería de oro en la selva pluvial tropical del Chocó, Colombia. Revista de Biología Tropical, 70(1). https://doi.org/10.15517/rev.biol.trop..v70i1.50653

Valoyes, Z. y Ramírez, G. (2020). Flora emergente en un gradiente de sucesión post-aprovechamiento minero en Condoto, Chocó. Ciencia en Desarrollo, 11(1), 7-20. https://doi.org/10.19053/01217488.v11.n1.2020.10358

Viana-Cunha, H. F., Andersen, K. M., Figueiredo, L., Delgado, F., Fonseca, I., Martins, A., et al. (2022). Direct evidence for phosphorus limitation on Amazon forest productivity. Nature, 608, 558-562. https://www.nature.com/articles/s41586-022-05085-2

Walker, T. W. y Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma,15, 1-19. https://sci-hub.se/10.1016/00-7061(76)90066-5

Wright, S. J. (2019). Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs, 0(0), e01382. https://doi.org/10.1002/ecm.1382

Wright, S. J., Turner, B. L., Yavitt, J. B., Harms, K. E., Kaspari, M., Tanner, E. V. J., Bujan, J. et al. (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99, 1129-1138. https://doi.org/10.1002/ecy.2193

Wright, S. J., Yavitt, J. B., Wurzburger, N., Turner, B. L., Tanner, E. V. J., Sayer, E. J. et al. (2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. https://doi.org/10.1890/10-1558.1
Sistema OJS - Metabiblioteca |