Authors
Abstract
In recent decades, the demonstration of cognitive abilities in birds has been documented and various tests have been designed to adequately evaluate their capacities. However, the results of these tests can also be influenced by aspects other than cognitive ability, such as behavioral, body and habitat characteristics. Species facing rapid and new environmental changes must express a cognitive performance that allows them to overcome obstacles through learning and acting, despite the fear of novelty. Even though Sicalis flaveola is extremely successful in disturbed environments, as with most tropical species, its behavioral flexibility and learning capacity are largely unknown. The objective of this study was to evaluate the cognitive ability
of S. flaveola and to determine whether cognition is affected by shyness, neophobia and body condition in individuals from two populations with different degrees of urbanization in Colombia. Obstacle removal and color discrimination tests were applied to 28 individuals in captivity. Shyness and neophobia were not found to be influenced by the place of origin, body condition or sex. For obstacle removal test, shyness and neophobia affected S. flaveola
learning speed of learning, but not discrimination. The ability to discriminate was in turn affected by the speed at which the birds learned to remove obstacles, level of difficulty, and the number of attempts required to solve the test. Learning capacity in this species is confirmed.
Keywords:
References
Alcaldía de Jamundi. (2021). https://www.jamundi.gov.co/Paginas/default.aspx
Alcaldía Santiago de Cali. (2018). Demografía de Santiago de Cali. https://www.cali.gov.co/planeacion/publicaciones/144497/demografia-de-santiago-de-cali/
Alvarado-Solano, D. P., & Ospina, J. T. O. (2015). Distribución espacial del Bosque Seco Tropical en el Valle del Cauca, Colombia. Acta Biológica Colombiana, 20(3), 141–153. https://doi.org/10.15446/abc.v20n3.46703
Ardila, R. (2011). Inteligencia, ¿qué sabemos y qué nos falta por investigar? Academia Colombiana de Ciencias, 35(134), 97–103.
Bates, D., Maechler Martin, Bolker Ben, Walker Steven, & Christensen Rune. (2021). Package “lme4” Linear Mixed-Effects Models using “Eigen” and S4. https://CRAN.R-project.org/package=Matrix
Biondi, L. M., Fuentes, G. M., Córdoba, R. S., Bó, M. S., Cavalli, M., Paterlini, C. A., Castano, M. v, & García, G. O. (2020). Variation in boldness and novelty response between rural and urban predatory birds: The Chimango Caracara, Milvago
chimango as study case. Behavioural Processes, 173, 104064. https://doi.org/https://doi.org/10.1016/j.beproc.2020.104064
Biondi, L. M., Fuentes, G., & Susana, M. (2021). Behavioural factors underlying innovative problem-solving differences in an avian predator from two contrasting habitats. Animal Cognition. https://doi.org/10.1007/s10071-021-01569-2
Bókony, V., Kulcsár, A., Tóth, Z., & Liker, A. (2012). Personality Traits and Behavioral Syndromes in Differently Urbanized Populations of House Sparrows (Passer domesticus). PLOS ONE, 7(5), e36639. https://doi.org/10.1371/JOURNAL.PONE.0036639
Boogert, N. J., Monceau, K., & Lefebvre, L. (2019). A field test of behavioral flexibility in Zenaida doves (Zenaida aurita). Psychological Bulletin, 126(1), 21. https://doi.org/10.1016/j.beproc.2010.06.020
Boogert, N. J., Reader, S. M., Hoppitt, W., & Laland, K. N. (2008). The origin and spread of innovations in starlings. Animal Behaviour, 75(4), 1509–1518. https://doi.org/10.1016/j.anbehav.2007.09.033
Burkart, J. M., Schubiger, M. N., & van Schaik, C. P. (2017). The evolution of general intelligence. Behavioral and Brain Sciences, 40, e195. https://doi.org/10.1017/S0140525X16000959
Cauchoix, M., Chow, P. K. Y., van Horik, J. O., Atance, C. M., Barbeau, E. J., Barragan-Jason, G., Bize, P., Boussard, A., Buechel, S. D., Cabirol, A., Cauchard, L., Claidière, N., Dalesman, S., Devaud, J. M., Didic, M., Doligez, B., Fagot, J., Fichtel, C., Henkevon der Malsburg, J., … Morand-Ferron, J. (2018). The repeatability of cognitive performance: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170281. https://doi.org/10.1098/rstb.2017.0281
Chittka, L., Dyer, A. G., & Dornhaus, A. (2003). Bees trade-off foraging speed for accuracy. Nature, 424(388).
Chittka, L., Skorupski, P., & Raine, N. E. (2009). Speed–accuracy tradeoffs in animal decision making. Trends in Ecology & Evolution, 24(7), 400-407. https://doi.org/https://doi.org/10.1016/j.tree.2009.02.010
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312(5780), 1662-1665. https://doi.org/10.1126/science.1126539
DANE. (2020). Resultados y proyecciones censo DANE. (Consulted: 2021-11-18) http://www.dane.gov.co/files/censo2005/resultados_am_municipios.pdf
Ducatez, S., Audet, J. N., & Lefebvre, L. (2015). Problem-solving and learning in Carib grackles: individuals show a consistent speed–accuracy trade-off. Animal Cognition, 18(2), 485–496. https://doi.org/10.1007/s10071-014-0817-1
Ducatez, S., Audet, J. N., & Lefebvre, L. (2019). Speed–accuracy trade-off, detour reaching and response to PHA in Carib grackles. Animal Cognition, 22(5), 625–633. https://doi.org/10.1007/s10071-019-01258-1
Dugatkin, L. A., & Alfieri, M. S. (2003). Boldness, behavioral inhibition and learning. Ethology Ecology and Evolution, 15(1), 43-49.
https://doi.org/10.1080/08927014.2003.9522689
Dyer, A. G., & Chittka, L. (2004). Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(9), 759-763. https://doi.org/10.1007/S00359-004-0547-Y
Espinal, L. S. (1967). Visión ecológica del departamento del Valle del Cauca. Universidad del Valle.
Espinosa, C., Castro, I., & Cruz-Bernate, L. (2021). Cryptic sexual dimorphism in saffron finch (Sicalis flaveola, Aves: Thraupidae) in the tropic. Boletin Cientifico Del Centro de Museos, 25(1), 55-70.
Federspiel, I. G., Garland, A., Guez, D., Bugnyar, T., Healy, S. D., Güntürkün, O., & Griffin, A. S. (2017). Adjusting foraging strategies: a comparison of rural and urban common mynas (Acridotheres tristis). Animal Cognition, 20(1), 65-74. https://doi.org/10.1007/s10071-016-1045-7
Goumas, M., Lee, V. E., Boogert, N. J., Kelley, L. A., & Thornton, A. (2020). The Role of Animal Cognition in Human-Wildlife Interactions. Frontiers in Psychology, 11, 3019. https://www.frontiersin.org/article/10.3389/fpsyg.2020.589978
Greenberg, R. (1990). Feeding neophobia and ecological plasticity: a test of the hypothesis with captive sparrows. Animal Behaviour, 39(2), 375-379. https://doi.org/10.1016/S0003-3472(05)80884-X
Griffin, A. S., & Boyce, H. M. (2009). Indian mynahs, Acridotheres tristis, learn about dangerous places by observing the fate of others. Animal Behaviour, 78(1), 79-84. https://doi.org/https://doi.org/10.1016/j.anbehav.2009.03.012
Griffin, A. S., Tebbich, S., & Bugnyar, T. (2017). Animal cognition in a human-dominated world. Animal Cognition, 20(1), 1-6. https://doi.org/10.1007/s10071-016-1051-9
Gross J. & Ligges, U. (2015). Nortest Tests for Normality. https://cran.r-project.org/web/packages/nortest/nortest.pdf
Guillette, L. M., Reddon, A. R., Hoeschele, M., & Sturdy, C. B. (2011). Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proceedings of the Royal Society B: Biological Sciences, 278(1706), 767-773. https://doi.org/10.1098/rspb.2010.1669
Hackett, P. M. W. (2020). The Complexity of Bird Behaviour. Springer. https://doi.org/10.1007/978-3-030-12192-1
Hilty, S. L., Brown, W. H., Álvarez López, H. & Tudor, G. (2001). Guia de las aves de Colombia. Universidad del Valle.
IDEAM. (2015). Instituto de Hidrología, Metereología y Estudios Ambientales-IDEAM, Estación 26055140 Jamundi y 26055120-Univ. del Valle (Consulted: 2021-11-18) http://www.ideam.gov.co/solicitud-de-informacion
Jakob, E. M., Marshall, S. D., & Uetz, G. W. (1996). Estimating Fitness: A Comparison of Body Condition Indices. Oikos,77(1), 61. https://doi.org/10.2307/3545585
Kamil, A. (1988). A Synthetic Approach to the Study of Animal Intelligence. https://digitalcommons.unl.edu/cgi/viewcontent. cgi?article=1013&context=bioscibehavior
Lambert, C. T., Balasubramanian, G., Camacho-Alpízar, A., & Guillette, L. M. (2021). Do sex differences in construction behavior relate to differences in physical cognitive abilities? Animal Cognition. https://doi.org/10.1007/s10071-021-01577-2
Lee, V. E., & Thornton, A. (2021). Animal Cognition in an Urbanised World. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.633947
Lefebvre, L., Ducatez, S., & Audet, J. N. (2016). Feeding innovations in a nested phylogeny of Neotropical passerines. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1690). https://doi.org/10.1098/rstb.2015.0188
Liebl, A. L., & Martin, L. B. (2014). Living on the edge: Range edge birds consume novel foods sooner than established ones. Behavioral Ecology, 25(5), 1089-1096. https://doi.org/10.1093/beheco/aru089
Madden, J. R., Langley, E. J. G., Whiteside, M. A., Beardsworth, C. E., & van Horik, J. O. (2018). The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170297. https://doi.org/10.1098/rstb.2017.0297
Magory Cohen, T., Kumar, R. S., Nair, M., Hauber, M. E., & Dor, R. (2020). Innovation and decreased neophobia drive invasion success in a widespread avian invader. Animal Behaviour, 163, 61-72. https://doi.org/https://doi.org/10.1016/j.anbehav.2020.02.012
Medina-García, A., Jawor, J. M., & Wright, T. F. (2017). Cognition, personality, and stress in budgerigars, Melopsittacus undulatus. Behavioral Ecology, 28(6), 1504-1516. https://doi.org/10.1093/beheco/arx116
Møller, A. P., Diaz, M., Flensted-Jensen, E., Grim, T., Ibáñez-Álamo, J. D., Jokimäki, J., Mänd, R., Markó, G., & Tryjanowski, P. (2012). High urban population density of birds reflects their timing of urbanization. Oecologia, 170(3), 867-875. https://doi.org/10.1007/s00442-012-2355-3
Oswald, I. (1964). Learning and Instinct in Animals. By W. H. Thorpe. British Journal of Psychiatry, 110(464), 141-142. https://doi.org/10.1192/bjp.110.464.141
Overington, S. E., Cauchard, L., Côté, K. A., & Lefebvre, L. (2011). Innovative foraging behaviour in birds: What characterizes an innovator? Behavioural Processes, 87(3), 274-285. https://doi.org/10.1016/j.beproc.2011.06.002
Patten, M. A., & Kelly, J. F. (2010). Habitat selection and the perceptual trap. Ecological Applications, 20(8), 2148-2156. https://doi.org/https://doi.org/10.1890/09-2370.1
Pinheiro, J., Bates, D., DebRoy, S., & Sarkar D. (2021). Package “NLME” Title Linear and Nonlinear Mixed Effects Models.
https://svn.r-project.org/R-packages/trunk/nlme/
Preiszner, B., Papp, S., Pipoly, I., Seress, G., Vincze, E., Liker, A., & Bókony, V. (2017). Problem-solving performance and reproductive success of great tits in urban and forest habitats. Animal Cognition, 20(1), 53-63. https://doi.org/10.1007/s10071-016-1008-z
Pritchard, D. J., Hurly, T. A., Tello-Ramos, M. C., & Healy, S. D. (2016). Why study cognition in the wild (and how to test it)? Journal of the Experimental Analysis of Behavior, 105(1), 41-55. https://doi.org/10.1002/jeab.195
Remsen, J. V. Jr., Areta, J. I., Bonaccorso, E., Claramunt, S., Jaramillo, A., Lane, D.F., Pacheco, J.F., Robbins, M.B., Stiles, F.G. & Zimmer, K.J. (2021). A Classification of the Bird Species of South America. https://www.museum.lsu.edu/~Remsen/SACCBaseline.htm
Ruiz-Gomez, M. de L., Huntingford, F. A., Øverli, Ø., Thörnqvist, P.-O., & Höglund, E. (2011). Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiology & Behavior, 102(3), 317–322. https://doi.org/https://doi.org/10.1016/j.physbeh.2010.11.023
Salkind, N. (2012). Encyclopedia of Research Design. https://doi.org/10.4135/9781412961288
Schönpflug, W. (2001). Experimental Laboratories: Biobehavioral. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 5109-5113). Pergamon. https://doi.org/https://doi.org/10.1016/B0-08-043076-7/00016-4
Schubiger, M. N., Fichtel, C., & Burkart, J. M. (2020). Validity of Cognitive Tests for Non-human Animals: Pitfalls and Prospects. Frontiers in Psychology, 11, 1835. https://doi.org/10.3389/fpsyg.2020.01835
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
Seaman, S. C., Waran, N. K., Mason, G., & D’Eath, R. B. (2008). Animal economics: assessing the motivation of female laboratory rabbits to reach a platform, social contact and food. Animal Behaviour, 75(1), 31-42. https://doi.org/https://doi.org/10.1016/j.anbehav.2006.09.031
Seymour, C. L., Simmons, R. E., Morling, F., George, S. T., Peters, K., & O’Riain, M. J. (2020). Caught on camera: The impacts of urban domestic cats on wild prey in an African city and neighbouring protected areas. Global Ecology and Conservation, 23, e01198. https://doi.org/10.1016/J.GECCO.2020.E01198
Shapiro, S. S. (1990). How to test normality and other distributional assumptions. ASQC.
Shaw, R. C. (2017). Testing cognition in the wild: factors affecting performance and individual consistency in two measures of avian cognition. Behavioural Processes, 134, 31-36. https://doi.org/10.1016/j.beproc.2016.06.004
Shochat, E., Lerman, S. B., Anderies, J. M., Warren, P. S., Faeth, S. H., & Nilon, C. H. (2010). Invasion, Competition, and Biodiversity Loss in Urban Ecosystems. BioScience, 60(3), 199–208. https://doi.org/10.1525/bio.2010.60.3.6
Sih, A., & Giudice, M. del. (2012a). Linking behavioural syndromes and cognition: A behavioural ecology perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2762-2772. https://doi.org/10.1098/rstb.2012.0216
Sih, A., & Giudice, M. del. (2012b). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1603), 2762–2772. https://doi.org/10.1098/rstb.2012.0216
Sol, D., Griffin, A. S., Bartomeus, I., & Boyce, H. (2011). Exploring or Avoiding Novel Food Resources? The Novelty Conflict in an Invasive Bird. PLOS ONE, 6(5), e19535-. https://doi.org/10.1371/journal.pone.0019535
Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour, 63(3), 495-502. https://doi.org/10.1006/ANBE.2001.1953
Solaro, C., & Sarasola, J. H. (2019). Urban living predicts behavioural response in a neotropical raptor. Behavioural Processes, 169, 103995. https://doi.org/10.1016/j.beproc.2019.103995
Szabo, B., Damas-Moreira, I., & Whiting, M. J. (2020). Can Cognitive Ability Give Invasive Species the Means to Succeed? A Review of the Evidence. Frontiers in Ecology and Evolution, 8, 187. https://www.frontiersin.org/article/10.3389/fevo.2020.00187 Team Core R. (2021). R: a language and environment for statistical computing (4.1.1).
Thorpe, W. (1956). Learning and instinct in animals. Harvard University Press. https://psycnet.apa.org/record/1957-02494-000
Tryjanowski, P., Møller, A. P., Morelli, F., Biaduń, W., Brauze, T., Ciach, M., Czechowski, P., Czyz, S., Dulisz, B., Golawski, A., Hetmański, T., Indykiewicz, P., Mitrus, C., Myczko, L., Nowakowski, J. J., Polakowski, M., Takacs, V., Wysocki, D., & Zduniak, P. (2016). Urbanization affects neophilia and risk-taking at bird-feeders. Scientific Reports, 6. https://doi.org/10.1038/srep28575
Uttara, S., Bhuvandas, Nishi., & Aggarwal, Vanita. (2012). Impacts of urbanization on environment. International Journal of Research in Engineering & Applied Sciences, 2(2),1637-1645.
Valcarcel, A., & Fernández-Juricic, E. (2009). Antipredator strategies of house finches: are urban habitats safe spots from predators even when humans are around? Behavioral Ecology and Sociobiology, 63(5), 673. https://doi.org/10.1007/s00265-008-0701-6
Van Horik, J. O., Langley, E. J. G., Whiteside, M. A., & Madden, J. R. (2017). Differential participation in cognitive tests is driven by personality, sex, body condition and experience. Behavioural Processes, 134, 22-30. https://doi.org/10.1016/j.beproc.2016.07.001
Van Horik, J. O., Langley, E. J. G., Whiteside, M. A., & Madden, J. R. (2019). A single factor explanation for associative learning performance on colour discrimination problems in common pheasants (Phasianus colchicus). Intelligence, 74, 53-61. https://doi.org/https://doi.org/10.1016/j.intell.2018.07.001
Van Horik, J. O., & Madden, J. R. (2016). A problem with problem solving: Motivational traits, but not cognition, predict success on novel operant foraging tasks. Animal Behaviour, 114, 189-198. https://doi.org/10.1016/j.anbehav.2016.02.006
Weaver, K. F., Morales, V., Dunn, S. L., Godde, K., & Weaver, P. F. (2017). Pearson’s and Spearman’s Correlation. An Introduction to Statistical Analysis in Research, 435-471. https://doi.org/10.1002/9781119454205.CH10
Webster, S. J., & Lefebvre, L. (2001). Problem solving and neophobia in a columbiform–passeriform assemblage in Barbados. Animal Behaviour, 62(1), 23-32. https://doi.org/https://doi.org/10.1006/anbe.2000.172.