DOI: 10.17151/bccm.2022.26.2.2
How to Cite
Aguilar M, S. B., Kogson Q., J. F., & Barrera Sánchez, C. F. (2022). Anonna muricata L., 1753. Magnolias. Annonaceae: preliminary evaluationof its genetic diversity in Colombia, using microsatellite molecular markers. Boletín Científico. Centro De Museos, 26(2), 37–51. https://doi.org/10.17151/bccm.2022.26.2.2

Authors

Sandra Bibiana Aguilar M
Universidad de Caldas
sandra.aguilar@ucaldas.edu.co
Perfil Google Scholar
José Fernando Kogson Q.
Universidad de Caldas
jfkogson@ucaldas.edu.co
Perfil Google Scholar
Carlos Felipe Barrera Sánchez
Universidad Nacional de Colombia
cfbarreras@unal.edu.co
Perfil Google Scholar

Abstract

The cultivation of Annona muricata in Colombia registers an annual production of 55.740 tons/year. Its main uses are as fresh fruit and to obtain by-products for medicinal use. To understand the distribution of genetic variation in populations can have important implications for conservation studies and cultivars management. The current situation of the genetic diversity of A. muricata in a region of Colombia is visualized in a preliminary way in this study. Objectives: to know the genetic diversity of A. muricata in Colombia, and to identify base cultivars for the preliminary establishment of a genetic improvement program. Scope: A total of 30 alleles were recorded with an average of 1.84 alleles per locus. The PIC (0.875) was considered to have a high informative power. The AMOVA analysis allowed a differentiation of the genetic variability among populations of 15% and of 74%. between individuals- The population revealed heterozygous deficiency (Ho= 0.449 and He= 0.342). A hundred per cent of polymorphic Loci was obtained for the municipality of Palestina. The clustering allowed the formation of three main groups, that share approximately 57% of their genome. Methodology: A total of 102 A. muricata materials collected in the departments of Caldas and Risaralda were evaluated using 16 SSR molecular markers. Statistical analyses and the clustering were carried out using the GenAlEx6 and NTSYS 2.02i software. Conclusions: discrimination of the 106 A. muricata materials with SSR markers revealed deficiency of heterozygotes. However, the preliminary identification of promising cultivars based on the individual selection of materials carrying allelic richness was possible as well as those materials that reported a lower similarity in the clusters. The information generated from this research
could be the input for the beginning of the establishment of a genetic improvement program for the species in Colombia.

Agronet. (2018). Producción nacional por producto. https://www.agronet.gov.co/Paginas/ProduccionNacionalProducto.aspx#

Agronet. (2022). Reporte: área, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Arnold, C. M., Rossetto, J., Mcnally, J. y Henry, R.J. (2002). The application of SSRs characterized for grape (Vitis vinifera) to conservation studies in Vitaceae. Am. J. Bot, 89, 22-28.

Dayanandan, S., Bawa, K. S. y Kesseli, R. (1997). Conservation of microsatellites among tropical trees (Leguminosae). Am. J. Bot, 84, 1658-1663.

Doyle, J. J. y Doyle, J. L. (1990). Isolation of Plant DNA From Fresh Tissue. Focus, 12, 13-15.

Escribano, P., Viruel, M. A. y Hormaza, J. I. (2004). Characterization and cross-species amplification of microsatellite markers in cherimoya (Annona cherimola Mill., Annonaceae). Ecol. Mol Notes, 4, 746-748.

Escribano, P., Viruel, M. A. y Hormaza, J. I. (2007). Molecular analysis of genetic diversity and geographic origin within an Ex-situ germplasm collection of cherimoya by using SSRs. Jashs, 132(3), 357-367.

Escribano, P., Viruel, M. A. y Hormaza, J. I. (2008). Development of 52 new Polymorphic SSR markers from cherimoya (Annona cherimola Mill.): transferability to related taxa and selection of a reduced set for DNA fingerprinting and diversity studies. Mol. Ecol. Resources, 8, 317-321.

Guarino, L. y Maxted, N. (1996). Complementary approaches to collecting plant genetic resources by national programs. Plant Genet. Resour. Newsl, 107,19-22.

Harlan, J. R. (30 de octubre de 2009). Crops and Man. American Journal of Alternative Agriculture, 8(1), 47-48. https://doi.org/10.1017/S0889189300004938

Hilge-Rodríguez, I. (2008). Diversidad genética del árbol Annona purpurea Moc. & Sessé ex Dunal (Annonaceae) utilizando microsatélites como marcadores moleculares (tesis de pregrado, Ciudad Universitaria “Rodrigo Facio” de Costa Rica). http://biologia.ucr.ac.cr/TesisLic/IrenaHilje.pdf

Kessler, J. A. (1993). Annonaceae: contributions of Spinger-Verlag. En K. Kubitzi, J. G. Rohwer y V. Brittrich (Eds.), Flowering Dicotyledons II. The families and genera of vascular plants (pp. 93-104).

Marshall, D. R. y Brown, D. H. (1975). Optimum sampling strategies in genetic conservation. En O. H. Frankel y J. G. Hawkes (Eds.), Crop genetic resources for today and tomorrow (pp.53-80).

Márquez-Cardozo, C. J. (2009). Caracterización Fisiológica fisicoquímica reológica nutracéutica estructural y sensorial de la guanánbana (Annona muricata L. cv elita) (tesis de doctorado). Universidad Nacional de Colombia. https://bit.ly/39QYa2j

Marulanda, M. L., López, A. M. y Aguilar, S. B. (2007). Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breed Appl Biotechnol, 7, 242-252.

Mix, C., Arens, P. F., Ouborg, N. J. y Smulders, M. J. (2004). Isolation and characterization of highly polymorphic microsatellite markers in Hypochaeris radicata (Asteraceae). Mol. Ecol. Notes, 4, 656-658.

Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol, 13.
https://doi.org/10.1111/j.1365-294X.2004.02141.x

Otero, A., Casas, A., Hamrick, J. L. y Cruse, J. (2005). Genetic variation and evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacán Valley, Central México. Mol Ecol, 14, 1603-1611.

Peakall, R. y Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes, 6, 288-295.

Piñero, D., Barahona, A., Eguiarte, L., Rocha, A. y Salas, R. (Eds.). (2008). La variabilidad genética de las especies: aspectos conceptuales y sus aplicaciones y perspectivas en México. https://bit.ly/3yeJ5B0

Popenoe, J. (1975). Status of Annona culture in South Florida. Annual Meeting Florida State Horticultural Society (FSHS), 87, 342-344.

Reina, C. E., Rivera, C. M. y Bonilla, F. (Eds.). (1996). Manejo postcosecha y evaluación de la calidad para la guanábana (Anonna muricata L). que se comercializa en la ciudad de Neiva. https://bit.ly/3QI9kao

Rohlf, F. J. (Ed.). (1997). NTSYSpc Numerical Taxonomy and Multivariate Analysis System version 2.2 Getting Started Guide. https://bit.ly/3yboFZL

Salazar, C., Vargas, C. F. y Salvador, J. (2010). Estructura y diversidad genética de Annona squamosa en huertos familiares mayas de la península de Yucatán. Mex Biodivers, 81, 759-770.

Schnell, R. J., Olano, T., Quintanilla, W. E. y Meerow, A. W. (2005). Isolation and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol. Ecol. Notes, 5, 625-627.

Selkoe, K. A. y Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Letters, 9, 615-629.

Sneath, P. H. A. y Sokal, R. R. (Eds.). (1973). Numerical Taxonomy: the principles and practice of numerical classification. San Francisco, Freeman. https://archive.org/details/numericaltaxonom0000snea/page/n5/mode/2up

Squirrell, J., Hollingsworth, P. M., Woodhead, M., Russell, J., Lowe, A. J., Gibby, M. y Powell, W. (2003). How much effort is required to isolate nuclear microsatellites from plants? Mol. Ecol, 12, 1339-1348.

Talamantes, C. A., Cortés, M., Balois, R., López, G. G. y Palomino, Y. A. (2020). Análisis molecular de la diversidad genética en Guanábana (Annona muricata l.) mediante marcadores SRAP. Revista fitotec. Mex, 42(3), 209-214.

Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323-354.

Zaghloul, M. S., Hamrick, J. L., Moustafa, A. A., Kamel, W. M. y El-Ghareeb, R. (2006). Genetic diversity within and among Sinai populations of three Ballota species (Lamiaceae). J. Heredity, 97, 45-54.

Zucchi, M. I., Brondani, R., Pinheiro, J. B., Chaves, L. J., Coelho, A. G. y Vencovsky, R. (2003). Genetic structure and gene flow in Eugenia dysenterica DC in the Brazilian Cerrado utilizing SSR markers. Revista Gen. Mol. Biol, 26, 449-457.
Sistema OJS - Metabiblioteca |