DOI: 10.17151/bccm.2021.25.2.3
How to Cite
Bacca, T. ., Delgado Gualmatan, W. L. ., Lagos Burbano, T. C. ., & Gutiérrez, Y. . (2021). Effect of altitude and shade of coffee on infestation by Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) in Nariño, Colombia. Boletín Científico. Centro De Museos, 25(2), 43–58. https://doi.org/10.17151/bccm.2021.25.2.3

Authors

Tito Bacca
Universidad del Tolima
titobacca@ut.edu.co
Perfil Google Scholar
Wilmer Libey Delgado Gualmatan
Universidad de Nariño
libeydelgado@hotmail.com
Perfil Google Scholar
Tulio Cesar Lagos Burbano
Universidad de Nariño
tclago3@yahoo.com
Perfil Google Scholar
Yeisson Gutiérrez
Corporación Colombiana de Investigación Agropecuaria – Agrosavia.Tumaco
ygutierrezl@agrosavia.co
Perfil Google Scholar

Abstract

Coffee berry borer is a poikilothermic organism whose development and population size depend proportionally on temperature. Consequently, the economic losses caused by this pest in the crop have a direct relationship with the temperature and other environmental conditions. Objective: To evaluate the effect of the altitudinal gradient and of different shade systems in coffee plantations on the infestation of coffee berry borer. Methodology: The infestation percentage was evaluated in twelve farms in an altitudinal range between 1430 and 2030 m at different levels of shade, including coffee plantations at full solar explosion. In each locality, environmental conditions were monitored through weather stations. Results: Infestation percentages were found to be inversely related to altitude, which, in turn, are directly influenced by temperature. On the other hand, there was a significant interaction between height and shade, thus suggesting that coffee plantations with shade had higher percentages of infestation. However, the highest incidence of coffee berry borer was evidenced in coffee plantations below 1600 meters above sea level with higher levels of shade. Additionally, it was verified that the increase in shade is inversely related to photosynthetically active radiation, a factor that could potentially influence the humidity of the fruits, thus indirectly affecting the development of coffee borer. Finally, the number of monthly generations of each evaluated locality was calculated, obtaining 0.3 generations in localities with average temperatures of 17 °C and one generation per month in localities with average temperatures of 23 °C. Conclusion: The number of generations and the population size of coffee berry borer is drastically influenced by environmental conditions such as the elevation and shade of the coffee crop. Therefore, these are conditions that must be considered when planning the management of this pest of great importance for coffee production.

Alados, I., Foyo-Moreno, I. Y., & Alados-Arboledas, L. (1996). Photosynthetically active radiation: measurements and modelling.

Agricultural and Forest Meteorology, 78(1-2), 121-131. https://doi.org/10.1016/0168-1923(95)02245-7 Asfaw, E., Mendesil, E., & Mohammed, A. (2019). Altitude and coffee production systems influence extent of infestation and bean damage by the coffee berry borer. Archives of Phytopathology and Plant Protection, 52(1–2), 170–183. https://doi.org/10.1080/03235408.2019.1594541

Atallah, S. S., Gómez, M. I., & Jaramillo, J. (2018). A Bioeconomic Model of Ecosystem Services Provision: Coffee Berry Borer and Shade-grown Coffee in Colombia. Ecological Economics, 144, 129–138. https://doi.org/10.1016/j.ecolecon.2017.08.002

Azrag, A. G. A., Yusuf, A. A., Pirk, C. W. W., Niassy, S., Mbugua, K. K., & Babin, R. (2020). Temperature-dependent development and survival of immature stages of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae). Bulletin of Entomological Research, 110(2), 207–218. https://doi.org/10.1017/S0007485319000476

Baker, A., Rivas, R., Balbuena, C., & Barrera, J. (1994). Abiotic mortality factors of the coffee berry borer (Hypothenemus hampei). Entomologia experimentalis et applicata, 71(3), 201-209. https://doi:10.1111/j.1570-7458.1994.tb01787.x

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014.

Beilhe, L., Roudine, S., Quintero Perez, J. A., Allinne, C., Daout, D., Mauxion, R., & Carval, D. (2020). Pest-regulating networks of the coffee berry borer (Hypothenemus hampei) in agroforestry systems. Crop Protection, 131, 105036. https://doi.org/10.1016/j.cropro.2019.105036

Benavides Machado, P.; Gil., Z. N.; Constantino, C; Villegas C y Giraldo, M. (2013). Plagas del café: Broca, minador, cochinillas harinosas, arañita roja y monalonion. En: P.

Benavides Machado y C. E. Góngora (Eds.). Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura. Chinchiná (pp. 215-260). FNC, CENICAFE.

Benavides Machado, P., Salazar, L., Góngora, C., & Molina, D. (2020). El control Natural en el ecosistema Cafetero Colombiano. https://doi.org/10.38141/CENBOOK-0001

Bosselmann, A. S., Dons, K., Oberthur, T., Olsen, C. S., Ræbild, A., & Usma, H. (2009). The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agriculture, Ecosystems and Environment, 129(1–3),253–260. https://doi.org/10.1016/j.agee.2008.09.004

Bustillo, A. E. (2008). Aspectos sobre la broca del café, Hypothenemus hampei, en Colombia. En A. E. Bustillo (Ed.). Los insectos y su manejo en la caficultura colombiana (pp. 388-418). Chinchiná, Colombia. FNC-CENICAFÉ.

Cárdenas, M. y Posada, F. (2001). Los insectos y otros habitantes de cafetales y platanales. Comité Departamental de Cafeteros del Quindío (1ra ed.). Armenia, Colombia: Comité departamental de Cafeteros del Quindío.

Centro Nacional de Investigaciones de Café (Cenicafé). (2021). Boletín Agrometeorológico Cafetero. https://agroclima.cenicafe.org/ boletin-agrometeorologico

Constantino, L. M., Gil, Z. N., Jaramillo, A., Benavides, P. M. y Bustillo, A. E. (2011). Efecto del cambio y la variabilidad climática en la dinámica de infestación de la broca del café, Hypothenemus hampei, en la zona central cafetera de Colombia (Conferencia). Memorias 38 Congreso Sociedad Colombiana de Entomología, Manizales, Colombia. https://doi.org/10.13140/RG.2.1.4683.9205

Damon, A. (2000). A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research, 90(6), 453–465. https://doi.org/10.1017/s0007485300000584

Departamento Nacional De Estadística. (2019). Boletín Técnico Producto Interno Bruto (PIB). Bogotá D.C. IV Trimestre de 2019.

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6668–6672. https://doi.org/10.1073/pnas.0709472105

Federación Nacional de Cafeteros. (2019). Informe de gestión. Estrategia e innovación. FNC.

Fox, J., Weisberg, S., & Bates, D. (2010). car: Companion to Applied Regression. R package version 2.0-2. Institute for Statistics and Mathematics, Wirtschafts University, Wien, Austria.

Gian-Reto, W., Peter Convey, E. P., Annette Menzel, Camille Parmesan, T., Beebee, J., & Jean-Marc. (2002). Ecological responses to recent climate change. Nature, 416, 389–395. http://dx.doi.org/10.1038/416389a

Giraldo-Jaramillo, M., Garcia, A. G., & Parra, J. R. (2018). Biology, thermal requirements, and estimation of the number of generations of Hypothenemus hampei (Ferrari, 1867) (Coleoptera: urculionidae) in the State of São Paulo, Brazil. Journal of Economic Entomology, 111(5), 2192–2200. https://doi.org/10.1093/jee/toy162

Giraldo-Jaramillo, M., Montoya, R. E. C., Sarmiento, H. N., Quiroga, M. A., Espinosa, O. J. C., García, L. J. C., Duque, O. H., Benavides, M. P. (2020). Vulnerabilidad de la caficultura de Nariño a la broca del café en diferentes eventos climáticos. Avances técnicos Cenicafé, 514. https://doi.org/10.38141/10779/0514

Hamilton, L. J., Hollingsworth, R. G., Sabado-Halpern, M., Manoukis, N. C., Follett, P. A., & Johnson, M. A. (2019). Coffee berry borer (Hypothenemus hampei) (Coleoptera: Curculionidae) development across an elevational gradient on Hawai‘i Island: Applying laboratory degree-day predictions to natural field populations. PLoS ONE, 14(7), 1–16. https://doi.org/10.1371/journal.pone.0218321

Jaramillo, A. (2005). Clima andino y café en Colombia. Centro Nacional de Investigaciones de Café-Cenicafé. Editorial Blanecolor Ltda.

Jaramillo, J, Chabi-Olaye, A., Kamonjo, C., Jaramillo, A., Vega, F. E., Poehling, H. M., & Borgemeister, C. (2009). Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of climate change impact on a tropical insect pest. PLoS ONE, 4(8), 1–11. https://doi.org/10.1371/journal.pone.0006487

Jaramillo, J, Chabi-Olaye, A., & Borgemeister, C. (2010). Temperature-dependent development and emergence pattern of Hypothenemus hampei (Coleoptera: Curculionidae: Scolytinae) from coffee berries. Journal of Economic Entomology, 103(4),1159–1165. https://doi.org/10.1603/EC09408

Lüdecke, D. (2016). sjPlot: data visualization for statistics in social science. R Package Version, 2(1). Mariño, Y. A., Pérez, M. E., Gallardo, F., Trifilio, M., Cruz, M., & Bayman, P. (2016). Sun vs. shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agriculture, Ecosystems and Environment, 222, 258–266. https://doi.org/10.1016/j.agee.2015.12.031

Mendesil, E., Abebe, M. Abdeta, C. (2008). Review of Research on Coffee, Tea and Spices Insect pests in Ethiopia (Increasing). Tea and Spices Insect pests in Ethiopia. In: Tadesse, A. (Ed.). Increasing Crop Production through Improved Plant Protection (pp. 117-140) (Vol. II). Addis Ababa, Ethiopia. KGaA. Weinheim, Germany: PPSE and EARO (Ethiopian Agricultural Research Organization).

Monteith, J. L., Ong, C. K., & Corlett, J. E. (1991). Microclimatic interactions in agroforestry systems. Forest Ecology and management, 45(1-4), 31-44. https://doi.org/10.1016/0378-1127(91)90204-9

Nesper, M., Kueffer, C., Krishnan, S., Kushalappa, C. G., & Ghazoul, J. (2017). Shade tree diversity enhances coffee production and quality in agroforestry systems in the Western Ghats. Agriculture, Ecosystems & Environment, 247, 172-181. https://dx.doi.org/10.1016/j.agee.2017.06.024

Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018).Package ‘PerformanceAnalytics.’ R Team Cooperation.

Ratte, H. T. (1984). Temperature and insect development. In Environmental physiology and biochemistry of insects (pp. 33-66).Springer, Berlin, Heidelberg.

R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,Austria. http://www.R-project.org/

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/Régnière, J., Powell, J., Bentz, B., & Nealis, V. (2012). Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. Journal of Insect Physiology, 58(5), 634–647. https://doi.org/10.1016/j.jinsphys.2012.01.010

Sanchez, E., Dufour, B., Olivas, A., Virginio Filho, E. D. M., Vilchez, S., & Avelino, J. (2012). Shade has Antagonistic Effects on Coffee Berry Borer. International Conference on Coffee Science 24, 1–7.

Staver, C., Guharay, F., Monterroso, D., & Muschler, R. . (2001). Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agroforest Syst, 53, 151–170. https://doi.org/10.1023/A:1013372403359

Team, R. C. (2019). R: a language and environment for statistical computing computer program, version 3.6. 1. R Core Team, Vienna, Austria.

Team, Rs. (2015). RStudio: integrated development for R. RStudio, Inc., Boston, MA http://www.rstudio.com, 42, 14.

Thomson, L., Macfadyen, S., & Hoffmann, A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52, 296–306. http://dx.doi.org/10.1016/j.biocontrol.2009.01.022

Vega, F. E., Infante, F., & Johnson, A. J. (2015). The genus Hypothenemus, with emphasis on H. hampei, the coffee berry. En Vega, F. E. & HofstetterIn, R. W. (Eds.) Bark Beetles (pp. 427-494). Cambridge, Massachusetts, Academic Press.

Vega, F. E., Rosenquist, E., & Collins, W. (2003). Global project needed to tackle coffee crisis A sharp drop in coffee prices has caused widespread suffering and hindered research. Nature 425, 343. https://doi.org/10.1038/425343a

Vélez, A. M., Vergara-Vásquez, E. L., Barraza-Coronell, W. D., & Agudelo-Yepes, D. C. (2015). Evaluación de un modelo estadístico para estimar la radiación solar en Magdalena, Colombia. TecnoLógicas, 18(35), 35. https://doi.org/10.22430/22565337.196

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
Sistema OJS - Metabiblioteca |