Authors
Abstract
The giant African land snail, Lissachatina fulica (Bowdich 1822), has expanded its distribution throughout the tropics from its native region in Africa over the past 200 years and is a common species in urban environments. Multiple factors are associated with the presence and density of these species, and untangling the contribution of these factors is important in developing control strategies for this invasive species. The African Snail density was estimated in 1,056 sampling plots in Cali Colombia, and this variable was related to weather, microhabitat and habitat structure. This study indicated that the density of this species is mainly affected by climatic conditions, followed by habitat structural variables, and lastly by microclimatic characteristics. The strong El Niño Southern Oscillation (ENSO) during the period of this study significantly impacted the density of the snail through physiological and behavioral mechanisms, such as aestivation, physiological stress, and altered activity levels. The structure of the habitat also plays a crucial role, with higher densities observed in areas with high Normalized Difference Building Index (NDBI) values, likely due to the availability of calcium-rich substrates. The findings of this study highlight the detrimental effect of ENSO on the population density of the giant African land snail, but the resilience of the species suggests it will continue to thrive in specific urban habitats despite climatic challenges.
References
BARKER, G. M. (2001) Gastropods on land: phylogeny, diversity and adaptive morphology. En BARKER, G. M. (ed). The biology of terrestrial molluscs (pp. 1-146). London: CABI Publishing.
BENBELLIL-TAFOUGHALT, S., KOENE, J. M. (2015) Influence of season, temperature, and photoperiod on growth of the land snail Helix aperta. Invertebr. Reprod. Dev., 59(1): 37-43.
BHATTACHARYYA, B., DAS, M., MISHRA, H., NATH, D. J., & BHAGAWATI, S. U. D. H. A. N. S. U. (2014). Bioecology and management of giant African snail, Achatina fulica (Bowdich). Int. J. Plant Prot., 7(2): 476-481.
ČILIAK, M., ČEJKA, T., TEJ, B., OBOŇA, J., & MANKO, P. (2024). Species richness patterns and community structure of land snail communities along an urban-rural gradient in river floodplains. Urban Ecosyst., 27(3): 953-963.
COPPOLINO, M. L. (2010). Strategies for collecting land snails and their impact on conservation planning. Am. Malacol. Bull., 28(2), 97-103.
COUFAL, R., RYELANDT, J., PETERKA, T., DÍTĚ, D., HÁJKOVÁ, P., HÁJEK, M., HORSÁKOVÁ, V., & HORSÁK, M.(2021). Land snail community patterns related to regional habitat conservation status of European spring fens. Sci. Total Environ., 783, 146910.
DICKENS, K. L., CAPINERA, J. L., & SMITH, T. R. (2018). Laboratory assessment of growth and reproduction of Lissachatina fulica (Gastropoda: Achatinidae). J. Molluscan Stud., 84(1), 46-53.
DICKENS, K. L., CAPINERA, J. L., & SMITH, T. R. (2017). Suitability of selected ornamental plants for growth and survival of Lissachatina fulica (Gastropoda: Achatinidae). Fla. Entomol., 100(4): 698-703.
ERKANO, W. K. (2021). Impacts of environmental parameters on the infectivity of freshwater Snail: En RAY, S., & MUKHERJEE, S., (eds) Update on Malacology (cap 4). London: IntechOpen.
GARCÉS-RESTREPO, M. F., GIRALDO, A., LÓPEZ, C., & OSPINA-REINA, N. F. (2016). Diversidad de murcielagos del campus Meléndez de la Universidad del Valle, Santiago de Cali, Colombia. Bol. Cient. Mus. Hist. Nat. Univ. Caldas, 20(1): 116-125.
GHEOCA, V., BENEDEK, A. M., & SCHNEIDER, E. (2023). Taxonomic and functional diversity of land snails reflects habitat complexity in riparian forests. Sci. Rep., 13(1): 9808.
KASSAMBARA, A. (2016). Factoextra: extract and visualize the results of multivariate data analyses. R package version, 1. KEMENCEI, Z., FARKAS, R., PÁLL-GERGELY, B., VILISICS, F., NAGY, A., HORNUNG, E., & SÓLYMOS, P. (2014). Microhabitat associations of land snails in forested dolinas: implications for coarse filter conservation. Community Ecol., 15(2): 180-186.
LÊ, S., JOSSE, J., & HUSSON, F. (2008). FactoMineR: an R package for multivariate analysis. J. Stat. Softw., 25: 1-18.
LI K, ZHENG F, CHENG L, ZHANG T, ZHU J. (2023) Record-breaking global temperature and crises with strong El Niño in 2023–2024. Innov. Geosci. 1(2):100030.
LOWE S, BROWNE M, BOUDJELAS S, DE POORTER M. (2004). 100 de las Especies Exóticas Invasoras más dañinas del mundo.Una selección del Global Invasive Species Database. Grupo Especialista de Especies Invasoras (GEEI), Auckland: UICN.
MARTIN, K., & SOMMER, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperatehumid forest ecosystems. JOURNAL OF BIOGEOGRAPHY, 31(4): 531-545.
MARTÍNEZ-ESCARBASSIERE, R., MARTÍNEZ, E. O., CASTILLO, O., & RUIZ, L. (2008). Distribución geográfica de Achatina (Lissachatina) fulica (Bowdich, 1882)(Gastropoda-Stylommatophora-Achatinidae) en Venezuela. Mem. Fund. La Salle Cien. Nat., 169, 93-106.
MIN, F., WANG, J., LIU, X., YUAN, Y., GUO, Y., ZHU, K., CHAI, Z., Zhang, Y., & LI, S. (2022). Environmental factors affecting freshwater snail intermediate hosts in Shenzhen and Adjacent region, South China. Trop. med. infect., 7(12): 426.
MUÑOZ, M. C., FIERRO-CALDERÓN, K., & RIVERA-GUTIERREZ, H. F. (2007). Las aves del campus de la Universidad del Valle, una isla verde urbana en Cali, Colombia. Ornitol. Colomb., 5(5): 5-20.
NICOLAI, A., & ANSART, A. (2017). Conservation at a slow pace: terrestrial gastropods facing fast-changing climate. Conserv. Physiol., 5(1): cox007.
NÚÑEZ, J. M. (2021). Análisis espacial de las áreas verdes urbanas de la Ciudad de México. Econ. Soc. Territ., 21(67): 803-828.
PATIÑO-MONTOYA, A., GIRALDO, A., & TIDON, R. (2022). Variation in the population density of the Giant African Snail (Lissachatina fulica) in the Neotropical region. Caldasia, 44(3): 627-635.
PRASAD, G. S., SINGH, D. R., SENANI, S., & MEDHI, R. P. (2004). Eco-friendly way to keep away pestiferous Giant African snail, Achatina fulica Bowdich from nursery beds. Curr. Sci., 87(12): 1657-1659.
RAGHURAMAN, S. P., SODEN. B., CLEMENT, A., VECCHI, G., MENEMENLIS, S., YANG, W. (2024) The 2023 global warming spike was driven by the El Niño–Southern scillation. Atmos. Chem. Phys., 24(19): 11275-11283.
RANDOLPH, P. A. (1973). Influence of environmental variability on land snail population properties. Ecology, 54(4): 933-955.
RAUT, S. K., & BARKER, G. M. (2002). Achatina fulica Bowdich and other Achatinidae as pests in tropical agriculture: En
BARKER, G. M. (ed). Molluscs as crop pests (55-114). UK: CABI Publishing.
RICKARDS, K. J. (2012). Moving at a Snail’s Pace: the effect of temperature and humidity cues on the behaviour of Littorina subrotundata(Tesis Doctoral), University of Guelph, Ontario, Canadá.
ROMERO-VARGAS, M., BERMÚDEZ-ROJAS, T., DURÁN-APUY, A., & ALFARO-SÁNCHEZ, M. (2022). Áreas verdes
urbanas, una caracterización paisajística y biológica aplicada a una microcuenca de la Gran Área Metropolitana de Costa Rica.
Rev. Geogr. Am. Cent. 69: 1-23.
SALVADOR, R. B., & TOMOTANI, B. M. (2024) Clocks at a snail pace: biological rhythms in terrestrial gastropods. PeerJ 12: e18318.
Schweizer, M., Triebskorn, R., & Köhler, H. R. (2019). Snails in the sun: Strategies of terrestrial gastropods to cope with hot and dry
conditions. Ecol. Evol., 9(22): 12940-12960.
SHIRAISHI, K. (2022). The inequity of distribution of urban forest and ecosystem services in Cali, Colombia. Urban For. Urban
Green., 67: 127446.
SILVA, G. M., THIENGO, S. C., JERALDO, V. S., REGO, M. I. F., SILVA, A. B. P., RODRIGUES, P. S., & GOMES, S. R. (2022). The invasive giant African land snail, Achatina fulica (Gastropoda: Pulmonata): global geographical distribution of this species as host of nematodes of medical and veterinary importance. J. Helminthol, 96: e86.
SKELDON, M. A., VADEBONCOEUR, M. A., HAMBURG, S. P., BLUM, J. D. (2007). Terrestrial gastropod responses to an ecosystem-level calcium manipulation in a northern hardwood forest. Can. J. Zool., 85(9): 994-1007.
TELES, W. S., SILVA, D. D. P., VILELA, B., LIMA-JUNIOR, D. P., PIRES-OLIVEIRA, J. C., & MIRANDA, M. S. (2022). How will the distributions of native and invasive species be affected by climate change? Insights from giant South American land. Diversity, 14: 467.
VIJAYAN, K., SUGANTHASAKTHIVEL, R., SAJEEV, T. V., SOORAE, P. S., NAGGS, F., & WADE, C. M. (2020). Genetic variation in the Giant African Snail Lissachatina fulica (Bowdich, 1822) in its invasive ranges of Asia and West Africa. Biol. J. Linn. Soc., 131(4): 973-985.
WEHNER, K., RENKER, C., SIMONS, N. K., WEISSER, W. W., & BLÜTHGEN, N. (2021). Narrow environmental niches predict land-use responses and vulnerability of land snail assemblages. BMC Ecol. Evol., 21: 15.
WEHNER, K., RENKER, C., BRÜCKNER, A., SIMONS, N. K., WEISSER, W. W., & BLÜTHGEN, N. (2019). Land‐use in Europe affects land snail assemblages directly and indirectly by modulating abiotic and biotic drivers. Ecosphere, 10(5): e02726