DOI: 10.17151/bccm.2023.27.1.12
Cómo citar
Andrés Morcillo, C., Martínez Sánchez, E. T., Ospina Bautista, F., González , R., Rivera Páez, F. A., & Estévez Varón, J. (2023). Mosquitos (Diptera:Culicidae) Asociados con Tillandsia elongata (Bromeliaceae) en un Agroecosistema de los Andes Colombianos. Boletín Científico Centro De Museos Museo De Historia Natural, 27(1), 167–177. https://doi.org/10.17151/bccm.2023.27.1.12

Autores/as

Estefani T. Martínez Sánchez
Universidad de Caldas
estefanimartinez.s24@gmail.com
https://orcid.org/0000-0003-1656-7573
Perfil Google Scholar
Fabiola Ospina Bautista
Universidad de Caldas
fabiola.ospina@ucaldas.edu.co
https://orcid.org/0000-0003-2498-1459
Perfil Google Scholar
Ranulfo González
Universidad del Valle
ranulfo.gonzalez@correounivalle.edu.co
https://orcid.org/0000-0003-4047-8677
Perfil Google Scholar
Fredy A. Rivera Páez
Universidad de Caldas
fredy.rivera@ucaldas.edu.co
https://orcid.org/0000-0001-8048-5818
Perfil Google Scholar
Jaime Estévez Varón
Universidad de Caldas
jaime.estevez@ucaldas.edu.co
https://orcid.org/0000-0002-1141-6576
Perfil Google Scholar

Resumen

Objetivo: Determinar las especies de la familia Culicidae que habitan en la bromelia Tillandsia elongata en un agroecosistema de los Andes Colombianos con base en métodos taxonómicos y moleculares. Alcance: Aunque la agricultura es una de las causas de la pérdida de biodiversidad, los agroecosistemas pueden mantener la biodiversidad de invertebrados, incluidas las especies de mosquitos. Metodología: Se recolectaron los estados inmaduros de mosquitos de 48 bromelias del agroecosistema “Montelindo” de la Universidad de Caldas en Santágueda (Palestina, Caldas, Colombia). Para recolectar los mosquitos inmaduros, se filtró el agua del tanque de cada bromelia usando un tamiz de malla de 150 µm; luego, cada hoja de bromelia se limpió con un pincel. Las especies de mosquitos, fueron identificadas por medio de claves taxonómicas y pruebas moleculares. Principales resultados: Este estudio proporciona el primer reporte de mosquitos inmaduros de los géneros Toxorhynchites y Wyeomyia que habitan en la bromelia Tillandsia elongata en los agroecosistemas. La identificación morfológica permitió establecer dos especies Tx. bambusicola y Tx. haemorrhoidalis. Las secuencias de ADN permitieron identificar dos especies Wy. mitchelli y Wy. pertinans. Nuestros resultados amplían la distribución de especies deToxorhynchites species, y las especies de bromelias que son sitios de oviposición para Tx. bambusicola and Tx. haemorrhoidalis. La presencia de las bromelias tanque en los agroecosistemas podrían contribuir a mantener la biodiversidad de Culicidae.

Agyekum, T. P., Arko-Mensah, J., Botwe, P. K., Hogarh, J. N., Issah, I., Dwomoh, D., Billah, M. K., Dadzie, S. K., Robins, T. G., & Fobil, J. N. (2022). Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Tropical Medicine International Health, 27(4), 338-346. https://doi.org/10.1111/tmi.13732

Amundrud, S. L., & Srivastava, D. S. (2015). Drought sensitivity predicts habitat size sensitivity in an aquatic ecosystem. Ecology, 96, 1957-1965.

Araújo, V. A., Melo, S. K., Araújo, A. P. A., Gomes, M. L. M., & Carneiro, M. A. A. (2007). Relationship between invertebrate fauna and bromeliad size. Brazilian Journal of Biology, 67, 611-617. https://doi.org/10.1590/S1519-69842007000400004

Barreto, P., & Lee, V. H. (1969). Artrópodos hematófagos del rio Raposo, Valle, Colombia: II—CULICIDAE. Caldasia, 407-440 https://www.jstor.org/stable/23641201

Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control. Springer.

Betancur, J. & Garcia, N. (2006). Las bromelias. En N. Garcia y G.Galeanao (Eds.) Libro rojo de plantas de Colombia. Volumen 3: Las bromelias, las labiadas y las pasifloras. Serie.

Campos, R. E., & Lounibos, L. P. (2000). Life tables of Toxorhynchites rutilus (Diptera: Culicidae) in nature in southern Florida. Journal of Medical Entomology, 37(3), 385-392. https://doi.org/10.1093/jmedent/37.3.385

Campos, R. E. (2011). Expanding the distribution of two species of mosquitoes (Diptera:Culicidae) in Argentina and notes on their bionomics. Revista de la Sociedad Entomológica Argentina,70(3-4),379-381.

Cardoso, C. A. A., Lourenço-de-Oliveira, R., Codeço, C. T., & Motta, M. A. (2015). Mosquitoes in bromeliads at ground level of the Brazilian Atlantic Forest: The relationship between mosquitoes, bromeliads and habitat. Annals of Tropical Medicine and Parasitology, 109(5), 431-442. https://pubmed.ncbi.nlm.nih.gov/27418695/

Ceretti-Junior, W., de Oliveira Christe, R., Rizzo, M., Strobel, R. C., de Matos Junior, M. O., De Mello, M. H. S. H., ... & Marrelli, M. T. (2016). Species composition and ecological aspects of immature mosquitoes (Diptera: Culicidae) in bromeliads in urban parks in the city of São Paulo, Brazil. Journal of arthropod-borne diseases, 10(1), 102. https://pubmed.ncbi.nlm.nih.gov/27047978/

Ciota, A. T., Matacchiero, A. C., Kilpatrick, A. M., & Kramer, L. D. (2014). The effect of temperature on life history traits of Culex mosquitoes. Journal of Medical Entomology, 51(1), 55-62. https://doi.org/10.1603/ME13003

Collins, L. E., & Blackwell, A. (2000). The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News and Information, 21(4), 105N-116N. https://www.cabi.org/bni/FullTextPDF/2000/20003030873.pdf

Cruz-Angon, A., & Greenberg, R. (2005). Are epiphytes important for birds in coffee plantations? An experimental assessment. Journal of Applied Ecology, 42, 150-159. https://www.jstor.org/stable/3505948

DaRocha, W. D., Ribeiro, S. P., Neves, F. S., Fernandes, G. W., Leponce, M., & Delabie, J. H. (2015). How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem. Myrmecological News, 21, 83-92. https://doi.org/10.25849/myrmecol.news_021:083

De Hoyos, P. M., Barreto, M., & Guhl, F. (2000). Hematophagous insect fauna in the southern part of Chiribiquete National Natural Park, Caquetá, Colombia. Biomédica, 20, 314-326. https://pesquisa.bvsalud.org/portal/resource/pt/lil-278206

Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. (2015), Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliad-Dwelling Predator. Biotropica, 47, 569-578. https://doi.org/10.1111/btp.12249

Dézerald, O., Leroy, C., Corbara, B., Dejean, A., Talaga, S., & Céréghino, R. (2017). Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshwater Biology, 62, 229-242. https://doi.org/10.1111/fwb.12862

Docile, T. N., Figueiro, R., Honorio, N. A., Baptista, D. F., Pereira, G., Dos Santos, J. A. A., & Codeco, C. T. (2017). Frequency of Aedes sp. Linnaeus (Diptera: Culicidae) and associated entomofauna in bromeliads from a forest patch within a densely urbanized area. Neotropical entomology, 46(6), 613-621. https://doi.org/10.1007/s13744-017-0498-y

Drummond, A., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Thierer, T., Wilson, A. (2009) Geneious v5.3. http://www.geneious.com/

Ferrari, M.C.O., Messier, F. & Chivers, D.P. (2008). Threat-sensitive learning of predatorsby larval mosquitoes Culex restuans. Behavioral Ecology Sociobiology 62, 1079–1083 https://doi.org/10.1007/s00265-007-0535-7

Fischer, S., Byttebier, B., Campos, R. (2016). Predadores de mosquitos. In C. Berón, R. Campos, R. Gleiser, L. Díaz-Nieto, O. Salomón & N. Schweigmann. (Eds.), Investigaciones Sobre Mosquitos Argentina (pp. 284-311). Universidad Nacional de Mar del Plata.

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–9.

Frank, J. H., & Lounibos, L. P. (2009). Insects and allies associated with bromeliads: a review. Terrestrial arthropod reviews, 1(2), 125-153. https://doi.org/10.1163/187498308X414742

Foster, W. A., Walker, E. D. (2019) Mosquitoes (Culicidae). In G. Mullen, L. Durden (Eds.), Medical and veterinary entomology (pp. 261-325). Academic press

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C, Patz, J. A., Prentice, I. C., Ramankutty, N., Snyder, P. K., & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772

Gómez, G. F., Bickersmith, S. A., González, R., Conn, J. E., & Correa, M. M. (2015). Molecular taxonomy provides new insights into Anopheles species of the neotropical Arribalzagia series. PLoS One, 10(3), e0119488. https://doi.org/10.1371/journal.pone.0119488

Grech, M. G., Sartor, P. D., Almirón, W. R., & Ludueña-Almeida, F. F. (2015). Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina. Acta Tropica, 146, 1-6.

Haq, S., Kumar, G., & Dhiman, R. C. (2019). Interspecific competition between larval stages of Aedes aegypti and Anopheles stephensi. Journal of Vector Borne Diseases, 56(4), 303-307. https://doi.org/10.4103/0972-9062.302032

Heard, S. B. (1994). Pitcher-plant midges and mosquitoes: a processing chain commensalism. Ecology, 75(6), 1647-1660. https://doi.org/10.2307/1939625

Hietz, P. (2005). Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conservation Biology, 19(2), 391-399. https://doi.org/10.1111/j.1523-1739.2005.00145.x

Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122(1), 113-130. https://doi.org/10.1016/j.biocon.2004.07.018

Hutchings, R. S. G. (1994). Palm bract breeding sites and their exploitation by Toxorhynchites (Lynchiella) haemorrhoidalis haemorrhoidalis (Diptera: Culicidae) in an upland forest of the central Amazon. Journal of Medical Entomology, 31(2), 186- 191. https://doi.org/10.1093/jmedent/31.2.186

Ibañez-Bernal, S. (2011). Mosquitoes (Insecta: Diptera: Culicidae). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Government of Veracruz, Veracruz University, Institute of Ecology, A.C., Mexico.

Instituto Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, & Ministerio de Ambiente, Vivienda y Desarrollo Territorial. (2006). Red Books of Threatened Species of Colombia.

Jabiol, J., Corbara, B., Dejean, A., & Céréghino, R. (2009). Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. Forest Ecology and Management, 257(1), 351-360. https://doi.org/10.1016/j.foreco.2008.09.010

Jaramillo, A., Ramírez, V. H., & Arcila, J. (2011). Patrones de distribución de la lluvia en la zona cafetera. Centro Nacional de Investigaciones de Café (Cenicafé). https://biblioteca.cenicafe.org/bitstream/10778/328/1/avt0410.pdf

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096

Lane, J. (1953). Neotropical Culioidae. Volumes I & II. Neotropical Culioidae. Volumes I & II.

León, T., Toro, J., Martínez, F., & Cleves, A. (2018). The main agroecological structure (MAS) of the agroecosystems: concept, methodology and applications. Sustainability. 10(3131),1–21. https://doi.org/10.3390/su10093131

Lester P.J. & Pike A.J. (2003). Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. Journal Vector Ecology, 28(2),267-74. https://pubmed.ncbi.nlm.nih.gov/14714676/

Linley, J. R., & Duzak, D. (1989). Egg cannibalism and carnivory among three species of Toxorhynchites. Journal of the American Mosquito Control Association, 5(3), 359-362. https://pubmed.ncbi.nlm.nih.gov/2573688/

Linton, Y.-M., Pecor, J. E., Porter, C. H., Mitchell, L. B., Garzon-Moreno, A., Foley, D. H., Pecor, D. B., & Wilkerson, R. C. (2013). Mosquitoes of eastern Amazonian Ecuador: Biodiversity, bionomics and barcodes. Memórias do Instituto Oswaldo Cruz, 108(suppl 1), 100-109. https://doi.org/10.1590/0074-0276130440

Lounibos, L. P., Frank, J. H., Machado-Allison, C. E., Ocanto, P., & Navarro, J. C. (1987). Survival, development and predatory effects of mosquito larvae in Venezuelan phytotelmata. Journal of Tropical Ecology, 3(3), 221-242. https://www.jstor.org/stable/2559589

Marcano, R., Stern, V. M., & Sances, F. V. (1986). Physiological response of cotton plants to feeding of three Tetranychus spider mite species (Acari: Tetranychidae). Journal of Economic Entomology, 79(5), 1217-1220. https://doi.org/10.1093/jee/79.5.1217

Marques, G. R., & Forattini, O. P. (2008). Culicídeos em bromélias: diversidade de fauna segundo influência antrópica, litoral de São Paulo. Revista de Saúde Pública, 42, 979-985. https://doi.org/10.1590/S0034-89102008000600001

Medeiros-Sousa, A. R., de Oliveira-Christe, R., Alves Camargo, A., Araujo Scinachi, C., Milani, G. M., Urbinatti, P. R., CerettiJunior, D.N.W. & Marrelli, M.T. (2020). Influence of water’s physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Tropica, 205, 105394. https://doi.org/10.1016/j.actatropica.2020.105394

Mocellin, M. G., Simões, T. C., Nascimento, T. F. S. D., Teixeira, M. L. F., Lounibos, L. P., & Oliveira, R.L.D. (2009). Bromeliadinhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro-Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Memórias do Instituto Oswaldo Cruz, 104, 1171-1176. https://doi.org/10.1590/S0074-02762009000800015

Montes de Oca, E., Ball, G. E., & Spence, J. R. (2014). Diversity of Carabidae (Insecta, Coleoptera) in epiphytic bromeliaceae in central Veracruz, Mexico. Environmental entomology, 36(3), 560-568. https://doi.org/10.1603/0046-225X(2007)36[560:DOCICI]2.0.CO;2

Muturi, E. J., Shililu, J., Jacob, B., Gu, W., Githure, J., & Novak, R. (2006). Mosquito speciesdiversity and abundance in relation to land use in a riceland agroecosystem in Mwea, Kenya. Journal of Vector Ecology, 31(1), 129-137. https://doi.org/10.3376/1081-1710(2006)31[129:MSDAAI]2.0.CO;2.

Myers, N., Mittermeier, R.A., Mittermeier, C.G, Da Fonseca, G.A., & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853. https://doi.org/10.1038/35002501

Navarro, J. C., Liria, J., Pinango, H., & Barrera, R. (2007). Biogeographic area relationships in Venezuela: A Parsimony analysis of Culicidae-Phytotelmata distribution in National Parks. Zootaxa, 1547(1), 1-19.

Navarro, J. C., Duque, P. L., Liria, J., Enríquez, S., Vaca-Moyano, F., & Salazar, J. G. (2018). A new phytotelm plant for ecuador, ananas comosus l. Merr. (Bromeliaceae)A its wyeomyia species inhabitant(Diptera, culicidae). CienciAmérica, 7(2), 71-85. https://doi.org/10.33210/ca.v7i2.182

Ohba, S., Van Soai, N., Van Anh, D. T., Nguyen, Y. T., & Takagi, M. (2015). Study of mosquito fauna in rice ecosystems around Hanoi, Northern Vietnam. Acta Tropica, 142, 89-95. https://doi.org/10.1016/j.actatropica.2014.11.002

Ospina-Bautista, F., Estévez-Varón, J. V., Betancur, J., & Realpe-Rebolledo, E. (2004). Estructura y composición de la comunidad de macroinvertebrados acuáticos asociados a Tillandsiaturneri Baker (Bromeliaceae) en un bosque alto andino colombiano. Acta Zoológica Mexicana, 20(1), 153-166.

Ospina-Bautista, F., Varón, J. V. E., Realpe, E., & Gast, F. (2008). Diversity of aquatic invertebrates associated to Bromeliaceae in the mountain cloud forest. Revista Colombiana de Entomología, 34(2), 224. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882008000200016

O’Meara, G. F., Cutwa, M. M., & Evans, L. F. (2003). Bromeliad-inhabiting mosquitoes in south Florida: native and exotic plants differ in species composition. Journal of Vector Ecology, 28, 37-46. https://pubmed.ncbi.nlm.nih.gov/12831127/

Perfecto, I., Rice, R. A., Greenberg, R., & Van der Voort, M. E. (1996). Shade coffee: a disappearing refuge for biodiversity: shade coffee plantations can contain as much biodiversity as forest habitats. BioScience, 46(8), 598-608. https://doi.org/10.2307/1312989

Perfecto, I., Mas, A., Dietsch, T., & Vandermeer, J. (2003). Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiversity & Conservation,12(6),1239-1252. https://doi.org/10.1023/A:1023039921916

Peyton, E. L., Roberts, D. R., Pinheiro, F. P., Vargas, R., & Balderama, F. (1983). Mosquito collections from a remote unstudied area of southeastern Bolivia. Mosquito Systematics,15(2),61-89.

Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2959-2971. https://doi.org/10.1098/rstb.2010.0143

Rost-Komiya, B., Smith, M.A., Rogy, P., & Srivastava, D. S. (2022). Do bromeliads affect the arboreal ant communities on orange trees in northwestern Costa Rica? PLoS ONE 17(7), e0271040. https://doi.org/10.1371/journal.pone.0271040

Roux, O., Diabaté, A. & Simard, F. (2014), Divergence in threat sensitivity among aquatic larvae of cryptic mosquito species. Journal Animal Ecology, 83,702-711. https://doi.org/10.1111/1365-2656.12163

Rozo-Lopez, P., & Mengual, X. (2015). Updated list of the mosquitoes of Colombia (Diptera:Culicidae). Biodiversity Data Journal, (3). https://doi.org/10.3897/BDJ.3.e4567

Sauvadet, M., Van den Meersche, K., Allinne, C., Gay, F., de Melo Virginio Filho, E., Chauvat,M., Becquer, T., Tixier, P., & Harmand, J. M. (2019). Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Science of the Total Environment, 649, 1065-1074. https://doi.org/10.1016/j.scitotenv.2018.08.291

Schroth, G., & Harvey, C. A. (2007). Biodiversity conservation in cocoa production landscapes: an overview. Biodiversity and Conservation, 16(8), 2237-2244.

Souza, R.S.; Diaz-Albiter, H.M.; Dillon, V.M.; Dillon, R.J.; Genta, F.A. (2016). Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS ONE , 11, e0151403.

Talaga, S., Dézerald, O., Carteron, A., Leroy, C., Carrias, J. F., Céréghino, R., & Dejean, A. (2017). Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city. Urban Ecosystems, 20(5),1001-1009. https://doi.org/10.1007/s11252-017-0653-6

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research, 25(24), 4876-4882. https://doi.org/10.1093/nar/25.24.4876

Travanty, N.V., Apperson, C.S., & Ponnusamy, L. A. (2019). Diverse Microbial Community Supports Larval Development and Survivorship of the Asian Tiger Mosquito (Diptera: Culicidae). Journal Medical Entomology, 56, 632–640.

Trimble, R. M., & Lund, C. T. (1983). Intra-and interpopulation variation in the thermal characteristics of preadult development of two latitudinally diverse populations of Toxorhynchites rutilus septentrionalis (Diptera: Culicidae). The Canadian Entomologist,115(6), 659-662. https://doi.org/10.4039/Ent115659-6

Walker, E.D., Olds, E.J., & Merritt, R.W. (1988). Gut Content Analysis of Mosquito Larvae (Diptera: Culicidae) Using Dapi Stain and Epifluorescence Microscopy. Journal Medical Entomology, 25, 551–554.
Sistema OJS - Metabiblioteca |