How to Cite
Zapata M., J. E. ., Quintero C., . Óscar A. ., & Porras B., L. D. (2015). Sorption isotherms for oat (Avena sativa) whole grain. Agronomía, 23(1), 82–92. Retrieved from https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/22

Authors

José Edgar Zapata M.

Ingeniero Químico, M.Sc, Ph.D., Profesor Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia.

Universidad de Antioquia
jedgar_4@yahoo.es
Óscar Albeiro Quintero C.

Ingeniero de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia.

Universidad de Antioquia
jedgar_4@yahoo.es
Luís Danilo Porras B.

Ingeniero de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia.

Universidad de Antioquia
jedgar_4@yahoo.es

Abstract

The sorption behavior of food materials is critical information for the design of drying and storage processes to ensure the stability of food. In this study the sorption isotherms of oat whole grain (Avena sativa) were adjusted at two temperatures (25 and 37 ° C) using six mathematical models (GAB, BET, Oswin, Caurie, Smith, and Henderson). Gravimetric method was used in the range of aqueous activity (aw) between 0.107 and 0.855. The quality of the fit was assessed with the regression coefficient (r2) and the mean relative error percentage (% E). The equilibrium moisture and the safety humidity (XS) presented dependence with temperature. Isosteric heat reached a value of 35.833 kJ/mol for humidity at 0.07 g water/g m.s. The models that best fit the experimental data were Oswin, Smith and Caurie.

Al-Muhtaseb, A.H., McMinn, W.A.M. & Magee, T.R.A. 2004. Water sorption isotherms of starch powders. Part 1: Mathematical description of experimental data. J Food Eng. 61 (3): 297-307.

Aman, P. & Hesselman, K. 1984. Analysis of starch and other main constituents of cereal grains. Swed J Agr Res. 14 (3): 135-139.

AOAC International. 1995. Official methods of analysis of AOAC International. 16 ed. AOAC International, Maryland.

Badui, S. 1993. Agua. pp. 649. En: Química de los alimentos. Alhambra Mexicana, Ciudad de México.

Barreiro, J.A., Fernández, S. & Sandoval, A.J. 2003. Water sorption characteristics of six row barley malt (Hordeum vulgare). Food Sci Technol-Leb. 36 (1): 37-42.

Berg, C.V.D. 1981. Vapour sorption equilibria and other water-starch interactions: A physico-chemical approach. Ph.D. Thesis. Agricultural University Wageningen. Wageningen, Netherland.

Brett, B., Figueroa, M., Sandoval, A.J., Barreiro, J.A. & Müller, A.J. 2009. Moisture Sorption Characteristics of Starchy Products: Oat Flour and Rice Flour. Food Biophys. 4 (3): 151-157.

Cassini, A.S., Marczak, L.D.F. & Noreña, C.P.Z. 2006. Water adsorption isotherms of texturized soy protein. J Food Eng. 77 (1): 194-199.

Correa, P., da Silva, P.S. & de Almeida, L.A. 2004. Estudo das propriedades físicas e de transporte na secagem de cebola (Allium cepa L) em camada delgada. Cien. Tecnol Aliment. 24 (3): 319-326.

Corzo, O. & Fuentes, A. 2004. Moisture Sorption isotherms and modeling for precooked flours of Pigeon pea (Cajanus cajans L millsp) and lima bean (Canavalia ensiformis). J Food Eng. 65 (3): 443-448.

Debnath, S., Hemavathy, J. & Bhat, K. 2002. Moisture sorption studies on onion powder. Food Chem. 78 (4): 479-482.

Foster, K.D., Bronlund, J.E. & Paterson, A.T. 2005. The prediction of moisture sorption isotherm for dairy powder. International Dairy Journal. 15 (4): 411-418.

Iglesias, H.A., Chirife, J. & Lombardi, J.L. 1975. Water sorption isotherms in sugar beet root. Int J Food Sci Tech. 10 (3): 299-308.

Kiranoudis, C.T., Maroulis, Z.B., Tsami, E. & Marinos-Kouris, D. 1993. Equilibrium moisture content and heat of desorption of some vegetables. J Food Eng. 20 (1): 55-74.

Martínez-Navarrete, N. 1998. Termodinámica y cinética de sistemas: alimento entorno. Universidad de Valencia, Valencia.

Montes, E. et al. 2009. Modelado de las isotermas de desorción del ñame (Dioscorea Rotundata). Dyna. 76 (157): 145-152. Ocampo, A. 2006. Modelo cinético de secado de la pulpa de mango. Revista EIA. 3 (5): 119-128.

Perdomo, J. et al. 2009. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydr Polym. 76 (2): 305-313.

Peterson, D. 2004. Oat a multifunctional grain. pp. 21-26. En: Peltonen-Sainio, P. & Topi-Hulmi, M. (eds.). Agrifood Research Reports 51. Agrifood Research, Jokioinen, Finland.

Prieto, F., Gordillo, A.J., Prieto, J., Gómez, C.A. & Roman, A.D. 2006. Evaluación de las isotermas de sorción en cereales para desayuno. Superficies y Vacío. 19 (1): 12-19.

Rizvi, S.S.H. 1995. Thermodynamics properties of food in dehydration. Marcel Dekker Inc., New York.

Saravacos, G.D., Tsiourvas, D.A. & Tsami, E. 1986. Effect of temperature on the water adsorption isotherms of sultana raisins. J Food Sci. 51 (2): 381-383.

Tolaba, M.P., Peltzer, M., Enríquez, N. & Pollio, M.L. 2004. Grain sorption equilibria of quinoa grains. J Food Eng. 61 (3): 365-371.

Tsami, E., Marinos-Kouris, D. & Maroulis, Z.B. 1990. Water sorption isotherm of raisins, currants, figs, prunes and apricots. J Food Sci. 55 (6): 1594-1597.

Vega, A., Lara, E. & Lemus, R. 2006. Isotermas de adsorción en harina de maíz (Zea mays L.). Food Science and Technology. 26 (4): 821-823.

Zapata, J.E., Quintero, O.A. & Porras, L.D. 2014. Sorption isotherms for oat flakes (Avena sativa L.). Agronomía Colombiana. 32 (1): 52-58.

Zhang, X.W. et al. 1996. Desorption Isotherms of Some Vegetables. J Sci Food Agr. 70 (3): 303-306.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |