DOI: 10.17151/vetzo.2018.12.1.6
How to Cite
Quintana-Ospina, G. ., Holguin-Cespedes, G. ., Rodriguez Rodriguez, V. ., & Verjan-Garcia, N. . (2018). Detection of Salmonella spp. antigens in Tolima poultry products by Western Blot . Revista Veterinaria Y Zootecnia (On Line), 12(1), 72–83. https://doi.org/10.17151/vetzo.2018.12.1.6

Authors

Gustavo Quintana-Ospina
Universidad del Tolima
a@a.com
Gisella Holguin-Cespedes
Universidad del Tolima
a@a.com
Victoria Rodriguez Rodriguez
Universidad del Tolima
a@a.com
Noel Verjan-Garcia
Universidad del Tolima
nverjang@ut.edu.co

Abstract

Salmonella spp., is a Gram-negative bacterium transmitted to human by consumption of contaminated water and food consumption, mainly poultry products like eggs and chicken meat. The aim of this study was to implement the Western Blot technic to detect the presence of antigenic proteins of Salmonella spp., in chicken carcasses and egg surface and if possible to compare it with the traditional microbiological isolation. A total of 18 chicken carcasses and 18 eggs were collected from the 13 communes and 5 marketplaces of Ibagué city. A chicken carcass and egg surface washes were obtained and an aliquot from each one was processed by using standard international guidelines ISO 6579-1:2017 for bacterial isolation. Another aliquot was centrifuged and the pellet separated by polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were transferred in to a nitrocellulose membrane by Western blot. Primary antibody was an in-house rabbit polyclonal anti-Salmonella enteritidis antiserum and the secondary antibody was a goat anti-rabbit IgG conjugated with alkaline phosphatase. The reaction of the two antibodies was detected with the addition of the BCIP-NBT enzyme substrate and the image recorded with a digital camera. Antigenic bands of Salmonella spp. of 10, 15, 17 and 40 kDa and 10, 17, 25, 37 and 75 kDa were detected in 15 out of 18 (83,3 %) and 4 out of 18 (22,2 %) samples from chicken carcasses and egg surface respectively. A total of 4 out of 36 samples were positive to Salmonella spp., by microbiological isolation. It is concluded that the SDS-PAGE and Western blot technic can successfully detectSalmonella antigens in chicken carcasses and egg surface and it may constitute a valuable complementary tool for the detection of this microorganism in poultry products.

 Bopp, C.A. et al. Escherichia, Shigella, and Salmonella. En: Jorgensen, J. et al. (Eds.). Manual of Clinical Microbiology. Washington: ASMscience, 2015. p. 685-713.

 Canals, R. et al. Genomics of Salmonella species. En: Wiedmann, M.; Zhang, W. (Eds.). Genomics of Foodborne Bacterial Pathogens. New York: Springer, 2011. p. 171- 236.

 CDC. Salmonella Homepage. Disponible en: Link.

 Collinson, S.K. et al. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. Journal of Bacteriology, v. 173, n. 15, p. 4773-4781, 1991.

 Cooper, G.L.; Thorns, C.J. Evaluation of SEF14 fimbrial dot blot and flagellar western blot tests as indicators of Salmonella enteritidis infection in chickens. Vet Rec, v. 138, n. 7, 149-153, 1996.

 Cordova, C. Utilizacion de proteinas de Salmonella enteritidis como antigenos en la prueba de western blot o inmunotransferencia. Ciudad de México, México: Universidad Autónoma Metropolitana Iztapalapa. Tesis (doctorado).

 De la Fuente, A.; Rodriguez, J.; Fonseca, E. Análisis de proteínas mediante electroforesis e inmunotransferencia. PIEL. Formación Continuada en Dermatología, v. 22, n. 5, p. 252-258, 2007.

 EFSA. Salmonella. Disponible en: Link.

 El-Fakar, S.A.Z.; Rabie, N.S. Immunogenic properties of outer membrane proteins of Salmonella in chicken. Global Veterinaria, v. 3, n. 2, p. 75-79, 2009.

 Fadl, A.A.; Venkitanarayanan, K.S.; Khan, M.I. Identification ofSalmonella Enteritidis outer membrane proteins expressed during attachment to human intestinal epithelial cells. Journal of Applied Microbiology, v. 92, n. 1, p. 180-186, 2002.

 Findik, A.; Buyuktanir, Ö.; Yurdusev, N. LPS and Flagellin-Based Models for Serological Screening and Confirmation of SalmonellaInfections in Chickens. Kafkas Universitesi Veteriner Fakultesi Dergisi, v. 16, n. 3, p. 487-492, 2010.

 Gonzalez, J. et al. Microbiological Isolation of Salmonella spp. And Molecular tools for detection. Salud Uninorte, v. 30, n. 1, p. 73-94, 2014.

 Helmuth, R. et al. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonellaserotypes. Infection and Immunity, v. 48, n. 1, p. 175-182, 1985.

 Hendriksen, R. A global Salmonella surveillance and laboratory support project of the World Health Organization. Disponible en:Link.

 Hendriksen, S.W.M et al. Animal-to-Human Transmission ofSalmonella Typhimurium DT104A Variant. Emerging Infectious Diseases, v. 10, n. 12, p. 2225-2227, 2004.

 Humphries, A.; Deridder, S.; Ba, A.J. Salmonella enterica Serotype Typhimurium Fimbrial Proteins Serve as Antigens during Infection of Mice. Infection and Immunity, v. 73, n. 9, p. 5329-5338, 2005.

 Keller, L.H. Monoclonal Antibody-Based Detection System forSalmonella enteritidis. Avian Diseases, v. 37, p. 501-507, 1993.

 Khan, M.I.; Fadl, A.A.; Venkitanarayanan, K.S. Reducing colonization ofSalmonella enteritidis in chicken by targeting outer membrane proteins.Journal of Applied Microbiology, v. 95, n. 1, p. 142-145, 2003.

 Koski, P et al. Isolation, cloning, and primary structure of a cationic 16-kDa outer membrane protein of Salmonella typhimurium. Journal of Biological Chemistry, v. 264, n. 32, p. 18973-18980, 1989.

 Lee, H.A. et al. Rapid enzyme‐linked immunosorbent assays for the detection of Salmonella enteritidis in eggs. Food and Agricultural Immunology, v. 1, n. 2, p89-99, 1989.

 Majowicz, S.E. et al. The Global Burden of Nontyphoidal SalmonellaGastroenteritis. Clinical Infectious Diseases, v. 50, n. 6, p. 882-889, 2010.

 Maripandi, A.; Al-Salamah, A.A. Analysis of Salmonella enteritidis outer membrane proteins and lipopolysaccharide profiles with the detection of immune dominant proteins. American Journal of Immunology, v. 6, n. 1, p. 1-6, 2010.

 Mogollon, C.; Rodriguez, V.; Verjan, N. Serotyping and molecular typing of Salmonella isolated from commercial eggs at Ibague, Colombia.Revista de Salud Animal, v. 38, n. 3, p. 1-10, 2016.

 Nhan, N.T. et al. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microbial Cell Factories, v. 10, n. 1, p. 22, 2011.

 Ospina-Florez, B. et al. Desarrollo de una prueba de Western Blot para la detección de Brucella canis en perros. Veterinaria y Zootecnia, v. 8, n. 1, p. 99-111, 2014.

 Parra, M. et al. Microbiologia, patogénesis, epidemiología, clínica y diagnóstico de las infecciones producidas por Salmonella. Mvz-Córdoba, v. 7, n. 2, p. 187-200, 2002.

 Perez, C. et al. Standardization of two Polymerase Chain Reaction tests for the diagnosis of Salmonella enterica subspecie enterica in eggs.Archivos de Medicina Veterinaria, v. 40, p. 235-242, 2008.

 Quinn, P. Veterinary Microbiology and Microbial Disease. New York, USA: WILEY, 2001.

 Rodriguez, J.; Rondón, I.; Verjan, N. Serotypes of Salmonella in Broiler Carcasses Marketed at Ibague, Colombia. Revista Brasileira de Ciência Avícola, v. 17, n. 4, p. 545-552, 2015.

 Rodríguez, R. et al. Characterization of Salmonella from Commercial Egg-Laying Hen Farms in a Central Region of Colombia. Avian Diseases, v. 59, n. 1, p. 57-63, 2015.

 Sambrook, J. Molecular cloning. Disponible en: Link.

 Shelobolina, E.S. et al. Isolation, Characterization, and U(VI)-Reducing Potential of a Facultatively Anaerobic, Acid-Resistant Bacterium from Low-pH, Nitrate- and U(VI)- Contaminated Subsurface Sediment and Description of Salmonella subterranea sp. nov. Applied and Environmental Microbiology, v. 70, n. 5, p. 2959-2965, 2004.

 Singh, R. et al. Low molecular weight proteins of outer membrane ofSalmonella typhimurium are immunogenic in Salmonella induced reactive arthritis revealed by proteomics. Clinical and Experimental Immunology, v. 148, n. 3, p. 486-493, 2007.

 Su, L.-H.; Chiu, C.-H. Salmonella: Clinical Importance and Evolution of Nomenclature. Chang Gung Medical Journal, v. 30, n. 3, p. 210-219, 2007.

 Thorns, C.J.; McLaren, I.M.; Sojka, M.G. The use of latex particle agglutination to specifically detect Salmonella enteritidis. International Journal of Food Microbiology, v. 21, n. 1-2), p. 47-53, 1994.

 Van der Zee, H. Conventional methods for the detection and isolation ofSalmonella enteritidis. International Journal of Food Microbiology, v. 21, n. 1-2, p. 41-46, 1994.

 Velge, P. et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen, v. 1, n. 3, p. 243-258, 2012.

 Verdugo-Rodriguez, A. et al. Detection of antibodies against Salmonellatyphi outer membrane protein (OMP) preparation in typhoid fever patients. Asian Pac J Allergy Immunol, v. 11, n. 1, p. 45-52, 1993.

 WHO. Foodborne diseases outbreaks: Guidelines for investigation and control. Disponible en: Link.

 WHO. Salmonella (non typhoidal). Disponible en: Link.

 Yeh, H. et al. Production of recombinant Salmonella fl agellar protein, FlgK, and its uses in detection of anti- Salmonella antibodies in chickens by automated capillary immunoassay. Journal of Microbiological Methods, v. 122, p. 27-32, 2016.

 Yoshida, C. et al. Evaluation of molecular methods for identification ofSalmonella serovars. Journal of Clinical Microbiology, v. 54, n. 8, p. 1992-1998, 2016.

Downloads

Download data is not yet available.
Sistema OJS - Metabiblioteca |