DOI: 10.17151/bccm.2022.26.2.10
Cómo citar
Gutiérrez López, Y., Cocomá, C. J., & Bacca, T. (2022). La kairomona p-anisaldehído incrementa la efectividad de trampas adhesivas para la captura de Neohydatothrips signifer (Insecta: Thysanoptera) en cultivos de maracuyá amarillo (Passiflora edulis). Boletín Científico Centro De Museos Museo De Historia Natural, 26(2), 195–208. https://doi.org/10.17151/bccm.2022.26.2.10

Autores/as

Yeisson Gutiérrez López
Corporación Colombiana de Investigación Agropecuaria – Agrosavia
ygutierrezl@agrosavia.co
Perfil Google Scholar
Carlos J. Cocomá
Universidad del Tolima
cjcocomas@ut.edu.co
Tito Bacca
Universidad del Tolima
titobacca@ut.edu.co
Perfil Google Scholar

Resumen

Los trips son especies plagas importantes en una gran variedad de cultivos. Su comportamiento críptico supone un desafío para la detección de los daños y el control con métodos tradicionales (ej., insecticidas). Aunque el uso de estrategias de ecología química para el monitoreo y colecta masiva se encuentra relativamente generalizado, la investigación al respecto en las regiones Neotropicales es aún escasa. En este estudio, llevamos a cabo un experimento de campo para probar si la kairomona p-anisaldehído aumenta la eficacia de las trampas adhesivas para controlar (colecta masiva) el trip Neohydatothrips signifier. Encontramos que las trampas pegajosas equipadas con la kairomona recolectaron mayor número trips (ninfas + adultos) a lo largo del tiempo, y este efecto no fue afectado por la altura de la trampa. Además, demostramos que la incidencia de trips se redujo rápidamente en plantas de Passiflora edulis cuando estaban rodeadas de trampas adhesivas que contenían kairomona. Nuestros resultados destacan el beneficio del uso de kairomonas en los programas de manejo integrado de plagas para N. signifier como un método sencillo y selectivo, compatible con estrategias de control biológico y químico. 

Alves-Silva, E., & Del-Claro, K. (2010). Thrips in the Neotropics: what do we know so far. Trends in Entomology, 6(1), 77-88.
http://www.leci.ib.ufu.br/pdf/ENT%2042%20Final.pdf

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127-135. https://doi.org/10.1016/j.tree.2008.10.008

Brødsgaard, H. F. (1989). Coloured sticky traps for Frankliniella occidentalis (Pergande)(Thysanoptera, Thripidae) in glasshouses. Journal of Applied Entomology, 107(1‐5), 136-140. https://doi.org/10.1111/j.1439-0418.1989.tb00240.x

Broughton, S., & Harrison, J. (2012). Evaluation of monitoring methods for thrips and the effect of trap colour and semiochemicals on sticky trap capture of thrips (Thysanoptera) and beneficial insects (Syrphidae, Hemerobiidae) in deciduous fruit trees in Western Australia. Crop Protection, 42, 156-163. https://doi.org/10.1016/j.cropro.2012.05.004

Childers, C.C. (1997) Feeding and Oviposition Injuries to Plants. In: Lewis, T., Ed., Thrips as Crop Pests, CAB International (pp.505-537).

Covaci, A. D., Oltean, I., & Pop, A. (2012). Evaluation of pheromone lure as mass-trapping tools for western flower thrips. Bulletin UASVM Agriculture, 69, 333-334.

Delignette-Muller, M. L., Dutang, C., Pouillot, R., Denis, J.B., & Siberchicot, A. (2019). Package ‘fitdistrplus.’ R Foundation for Statistical Computing.

Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440

Fox, J., & Weisberg, S. (2018). An R Companion to Applied Regression. Sage Publications.

Gutiérrez, Y. (2020). Multiple mechanisms in which agricultural insects respond to environmental stressors: canalization, plasticity and evolution. Revista de Ciencias Agrícolas, 37(1), 90-99. https://doi.org/10.22267/rcia.203701.129

Hao, H., Wei, J., Dai, J., & Du, J. (2014). Host-seeking and blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde. Journal of Medical Entomology, 45(3), 533-539.

Jaramillo, J., Cárdenas, J., & Orozco, J. (2009). Manual sobre el cultivo del maracuyá (Passiflora edulis) en Colombia. Produmedios.

Junqueira, C. N., Yamamoto, M., Oliveira, P. E., Hogendoorn, K., & Augusto, S. C. (2013). Nest management increases pollinator density in passion fruit orchards. Apidologie, 44(6), 729-737. https://hal.archives-ouvertes.fr/hal-01201340/document

Kawai, A. (1990). Control of Thrips palmi Karny in Japan. Japan Agricultural Research Quarterly, 24(1), 43-48.

Kirk, W. D. J., de Kogel, W. J., Koschier, E. H., & Teulon, D. A. J. (2021). Semiochemicals for thrips and their use in pest management. Annual Review of Entomology, 66, 101-119. https://doi.org/10.1146/annurev-ento-022020-081531

Koschier, E. H. (2008). Essential oil compounds for thrips control–a review. Natural Product Communications, 3(7). https://doi.org/10.1177/1934578X0800300726

Lewis, T. (1997). Thrips as crop pests. Cab International.

Lim, U. T., Kim, E., & Mainali, B. P. (2013). Flower model traps reduced thrips infestations on a pepper crop in field. Journal of Asia-Pacific Entomology, 16(2), 143-145. https://doi.org/10.1016/j.aspen.2012.12.007

Lim, U. T., & Mainali, B. P. (2009). Optimum density of chrysanthemum flower model traps to reduce infestations of Frankliniella intonsa (Thysanoptera: Thripidae) on greenhouse strawberry. Crop Protection, 28(12), 1098-1100. https://doi.org/10.1016/j.cropro.2009.07.012

Lima, E. F. B., & Mound, L. A. (2016). Species-richness in Neotropical Sericothripinae (Thysanoptera: Thripidae). Zootaxa, 4162(1), 1-45. https://doi.org/10.11646/zootaxa.4162.1.1

Lüdecke, D, Makowski, D., & Waggoner, P. (2019). Performance: assessment of regression models performance. R Package Version 0.4, 2.

Lüdecke, Daniel. (2016). sjPlot: data visualization for statistics in social science. R Package Version, 2(1).

Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In Plant, soil and microbes (pp. 253–269). Springer.

Mouden, S., Sarmiento, K. F., Klinkhamer, P. G. L., & Leiss, K. A. (2017). Integrated pest management in western flower thrips: past, present and future. Pest Management Science, 73(5), 813-822. https://doi.org/10.1002/ps.4531

Mound, L. A., & Marullo, R. (1996). The thrips of Central and South America: an introduction (Insecta:Thysanoptera). Associated Publishers.

Natwick, E. T., Byers, J. A., Chu, C., Lopez, M., & Henneberry, T. J. (2007). Early Detection and Mass Trapping of Frankliniella occidentalis, and Thrips tabaci in Vegetable Crops. Southwestern Entomologist, 32(4), 229-238. https://doi.org/10.3958/0147-1724-32.4.229

Neri, F., Mari, M., & Brigati, S. (2006). Control of Penicillium expansum by plant volatile compounds. Plant Pathology, 55(1), 100-105.
https://doi.org/10.1111/j.1365-3059.2005.01312.x

Park, I., Choi, K., Kim, D., Choi, I., Kim, L., Bak, W., Choi, J., & Shin, S. (2006). Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Management Science: Formerly Pesticide Science, 62(8),723-728. https://doi.org/10.1002/ps.1228

Pobozniak, M., Tokarz, K., & Musynov, K. (2020). Evaluation of sticky trap colour for thrips (Thysanoptera) monitoring in pea crops (Pisum sativum L.). Journal of Plant Diseases and Protection, 127(3),307-321. https://doi.org/10.1007/s41348-020-00301-5

Priesner, H. (1932). Neue Thysanopteren aus Mexiko, gesammelt von Prof. Dr. A. Dampf. Wiener Entomologische Zeitung, 49(3), 170-185. https://www.zobodat.at/pdf/WEZ_49_0170-0185.pdf

Riley, D., Sparks Jr, A., Srinivasan, R., Kennedy, G., Fonsah, G., Scott, J., & Olson, S. (2018). Thrips: Biology, ecology, and management. In Sustainable Management of Arthropod Pests of Tomato (pp. 49–71). Elsevier.

Salamanca Bastidas, J., Varón Devia, E. H., & Santos Amaya, O. (2010). Breeding and Test of the Predatory Capacity of Chrysoperla externa on Neohydatothrips signifer, a Pestiferous Trips of the Passion Fruit Crop . Ciencia & Tecnología Agropecuaria, 11(1), 31-40. https://doi.org/10.21930/rcta.vol11_num1_art:192

Sampson, C., & Kirk, W. D. J. (2013). Can mass trapping reduce thrips damage and is it economically viable? Management of the western flower thrips in strawberry. PLoS One, 8(11). https://doi.org/10.1371/journal.pone.0080787

Santos Amaya, O., Varón Devia, E. H., & Floriano, J.A. (2012a). Propuesta de muestreo para Neohydatothrips signifer (Thysanoptera: Thripidae) en el cultivo de maracuyá. Pesquisa Agropecuaria Brasileira, 47(11), 1572-1580. https://doi.org/10.1590/S0100-204X2012001100003

Santos Amaya, O., Varón Devia, E. H., Gaigl, A., & Floriano, J.A. (2012b). Nivel de daño económico para Neohydatothrips signifer (Thysanoptera: Thripidae) en maracuyá en el Huila, Colombia/Economic injury level for Neohydatothrips signifer (Thysanoptera: Thripidae) in passion fruit at the Huila region, Colombia. Revista Colombiana de Entomología, 38(1), 23. http://www.scielo.org.co/pdf/rcen/v38n1/v38n1a04.pdf

Showler, A. T., & Harlien, J. L. (2018). Effects of the botanical compound p-anisaldehyde on horn fly (Diptera: Muscidae) repellency, mortality, and reproduction. Journal of Medical Entomology, 55(1), 183-192. https://doi.org/10.1093/jme/tjx183

Sims, J. (1818). Passiflora edulis. Botanical Magazine, 45, 1989-1990.

Team, R. C. (2019). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. URL Https://Www. R-Project. Org.

Team, Rs. (2020). RStudio: integrated development for R. In RStudio, PBC, Boston, MA URL http://www.rstudio.com/

Teulon, D.A.J, Davidson, M. M., Perry, N. B., Nielsen, M.-C., Castañé, C., Bosch, D., Riudavets, J., Van Tol, R., & de Kogel, W. J. (2017). Methyl isonicotinate—a non-pheromone thrips semiochemical—and its potential for pest management. International Journal of Tropical Insect Science, 37(2), 50-56. https://doi.org/10.1017/S1742758417000030

Teulon, D.A.J., Butler, R. C., James, D. E., & Davidson, M. M. (2007). Odour‐baited traps influence thrips capture in proximal unbaited traps in the field. Entomologia Experimentalis et Applicata, 123(3), 253-262. https://doi.org/10.1111/j.1570-7458.2007.00554.x

Teulon, D.A.J., Penman, D. R., & Ramakers, P. M. J. (1993). Volatile chemicals for thrips (Thysanoptera: Thripidae) host finding and applications for thrips pest management. Journal of Economic Entomology, 86(5), 1405-1415. https://doi.org/10.1093/jee/86.5.1405

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. Springer.
Sistema OJS - Metabiblioteca |