DOI: 10.17151/bccm.2022.26.2.3
Cómo citar
Carmona Hernández, J. C., Ángel Isaza, J., Restrepo López, J. P., Narváez Solarte, W., & González Correa, C. H. (2022). Efecto del extracto de Passiflora ligularis Juss 1805 (Malpighiales: Passifloraceae) como agente reductor de marcadores de inflamación crónica. Boletín Científico Centro De Museos Museo De Historia Natural, 26(2), 53–64. https://doi.org/10.17151/bccm.2022.26.2.3

Autores/as

Juan C. Carmona Hernández
Universidad de Manizales
jucaca@umanizales.edu.co
Perfil Google Scholar
Jaime Ángel Isaza
Promitec SAS
Nutricionanimal@promitec.com.co
Perfil Google Scholar
Juan P. Restrepo López
Universidad de Caldas
juanpa6100@gmail.com
Perfil Google Scholar
William Narváez Solarte
Universidad de Caldas
wnarvaez@ucaldas.edu.co
Perfil Google Scholar
Clara H. González Correa
Universidad de Caldas
clara.gonzalez@ucaldas.edu.co
Perfil Google Scholar

Resumen

Objetivo: El objetivo del presente estudio fue determinar el efecto de la suplementación con extracto de Passiflora ligularis (granadilla), sobre algunos marcadores de inflamación crónica de bajo grado asociados al sobrepeso en un modelo de ratones albinos alimentados con dieta alta en grasa. Materiales y métodos: Se utilizaron 36 ratones albinos, distribuidos en un diseño irrestrictamente al azar, en 3 tratamientos y 12 repeticiones. Los tratamientos representaron un grupo con dieta control, un segundo tratamiento con dieta alta en grasa y un grupo que recibió alimento alto en grasa y suplementación con 3g/L de extracto de Passiflora ligularis en el agua de bebida. Pasados 49 días, se evaluaron las variables consumo de alimento, consumo de agua y ganancia de peso, además se evaluaron las concentraciones séricas de los marcadores de inflamación IL-6 y TNF-α. Resultados: La suplementación con extracto de Passiflora ligularis redujo (p < 0,05) la ganancia de peso de los ratones, en comparación con los animales que recibieron la dieta alta en grasa sin suplementación, los niveles séricos de TNF- α en los ratones suplementados no presentaron diferencias con ninguno de los dos grupos control, mientras que las cantidades de IL-6 no fueron afectados por los tratamientos. Conclusión: La concentración de 3g/L en el agua de bebida el extracto de Passiflora ligularis disminuyó la ganancia de peso producida por el aumento de la grasa en la dieta, y redujo la medición del marcador de inflamación sérico TNF-α, indicando un efecto benéfico sobre el riesgo asociado a la inflamación crónica de bajo grado.

Bak. M. J., Truong, V. L., Kang, H. S. & Jun, M. (2013). Jeong WS. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/409321

Cao, Y. J., Zhang, Y. M., Qi, J. P., Liu, R., Zhang, H. & He, L. C. (2015). Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. International immunopharmacology, 28(2): 1018-1025. https://doi.org/10.1016/j.intimp.2015.07.037

Carmona-Hernández, J. C., Ángel-Isaza, J., González-Correa, C. H. & Narváez-Solarte, W. (2017). Anti-inflammatory effects of flavonoids evaluated in murine models: a descriptive review. Animal Science Papers & Reports, 35(4).

Carmona-Hernández, J. C., Taborda-Ocampo, G., Valdez, J. C., Bolling, B. W. & González-Correa, C. H. (2019). polyphenol extracts from three colombian passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of caco-2 cells. Molecules, 24(24). https://doi.org/10.3390/molecules24244614

Chaparro, D. C., Maldonado, M. E., Franco, M. C. & Urango, L. A. (2015). Nutritional and antioxidant characteristics of banana passion fruit (Passiflora mollisima Bailey). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1): 120-128. https://doi.org/10.17533/udea.penh.v16n2a07

Chen, N., Bezzina, R., Hinch, E., Lewandowski, P. A., Cameron-Smith, D., Mathai, M. L. & Weisinger, R. S. (2009). Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutrition Research, 29(11): 784-793. https://doi.org/10.1016/j.nutres.2009.10.003

DANE. (2016). Encuesta Nacional Agropecuaria ENA. Boletín Técnico. Comunicación informativa.

De Melo, T. S., Lima, P. R., Carvalho, K. M. M. B., Fontenele, T. M., Solon, F. R. N., Tomé, A. R. & De Queiroz, M. G. R. (2017). Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 50(1). https://doi.org/10.1590/1414-431x20165630

Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. & Paquot, N. (2014). Inflammation As A Link Between Obesity, Metabolic Syndrome and Type 2 Diabetes. Diabetes Research and Clinical Practice, 105(2): 141-150. https://doi.org/10.1016/j.diabres.2014.04.006

Faam, B., Zarkesh, M., Daneshpour, M. S., Azizi, F. & Hedayati, M. (2014). The association between inflammatory markers and obesity-related factors in Tehranian adults: Tehran lipid and glucose study. Iranian Journal of Basic Medical Sciences, 17(8): 577-82.

Hariri, N. & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews, 23(2): 270-299.
https://doi.org/10.1017/S0954422410000168

He, X., Luan, F., Yang, Y., Wang, Z., Zhao, Z., Fang, J., ... & Li, Y. (2020). Passiflora edulis: an insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617. https://doi.org/10.3389/fphar.2020.00617

Ibitoye, O. B. & Ajiboye, T. O. (2018). Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Archives of Physiology and Biochemistry, 124(5), 410-417. https://doi.org/10.1080/13813455.2017.1415938

Kim, J. A., & Choi, K. M. (2020). Newly discovered adipokines: pathophysiological link between obesity and cardiometabolic disorders. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.568800

Lu, C., Zhu, W., Shen, C. L. & Gao, W. (2012). Green tea polyphenols reduce body weight in rats by modulating obesity-related genes. PLoS ONE, 7(6). https://doi.org/10.1371/journal.pone.0038332

Mattila, P., Hellström, J. & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54(19): 7193-7199. https://doi.org/10.1021/jf0615247

Mattila, P., Pihlava, J. M., & Hellström, J., (2005). Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 53(21), 8290-8295. https://doi.org/10.1021/jf051437z

Nani, A., Murtaza, B., Khan, A. S., Khan, N. A., & Hichami, A. (2021). Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules, 26(4): 985. https://doi.org/10.3390/MOLECULES26040985

National Research Council. (2010). Guide for the Care and Use of Laboratory Animals. The National Academies Press.

Navarrete, S., Alarcón, M. & Palomo, I. (2015). Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS- activated macrophages. Molecules, 20(8), 15319-15329. https://doi.org/10.3390/molecules200815319

Pan, M. H., Yang, G., Li, S., Li, M. Y., Tsai, M. L., Wu, J. C. & Lai, C. S. (2017). Combination of citrus polymethoxyflavones, green tea polyphenols, and Lychee extracts suppresses obesity and hepatic steatosis in high-fat diet induced obese mice. Molecular Nutrition and Food Research, 61(11): 1-29. https://doi.org/10.1002/mnfr.201601104

Peluso, I., Raguzzini, A. & Serafini, M. (2013). Effect of flavonoids on circulating levels of TNF-α and IL-6 in humans: A systematic review and meta-analysis. Molecular Nutrition and Food Research, 57(5): 784-801. https://doi.org/10.1002/mnfr.201200721

Rani, V., Deep, G., Singh, R. K., Palle, K. & Yadav, U. C. S. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148: 183-193. https://doi.org/10.1016/j.lfs.2016.02.002

Rivera, L., Morón, R., Sánchez, M., Zarzuelo, A. & Galisteo, M. (2008). Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity, 16(9): 2081-2087. https://doi.org/10.1038/oby.2008.315

Romier, B., Van De Walle, J., During, A., Larondelle, Y. & Schneider, Y. J. (2008). Modulation of signalling nuclear factor-kB activation pathway by polyphenols in human intestinal Caco-2 cells. British Journal of Nutrition, 100(3): 542-551. https://doi.org/10.1017/S0007114508966666

Sabogal-Palma, A., Chávez-Marín, J., Oliveros-Gómez, D., Murillo-Perea, E. & Méndez-Arteaga, J. J. (2016). Funcionalidades Biológicas de Passiflora Maliformis del Sur Macizo Colombiano. Bioagro, 28(1): 3-12.

Sae-Tan, S., Grove, K. A., Kennett, M. J. & Lambert, J. D. (2011). (−)-Epigallocatechin-3- gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food & Function, 2(2): 111. https://doi.org/10.1039/C0FO00155D

Senaphan, K., Kukongviriyapan, U., Sangartit, W., Pakdeechote, P., Pannangpetch, P., Prachaney, P. & Kukongviriyapan, V. (2015). Ferulic acid alleviates changes in a rat model of metabolic syndrome induced by high-carbohydrate, high-fat diet. Nutrients, 7(8): 6446-6464. https://doi.org/10.3390/nu7085283

Shishikura, Y., Khokhar, S. & Murray, B. S. (2006). Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. Journal of Agricultural and Food Chemistry, 54(5): 1906-1913. https://doi.org/10.1021/jf051988p

Sun, C., Zhao, C., Guven, E. C., Paoli, P., Simal‐Gandara, J., Ramkumar, K. M., ... & Xiao, J. (2020). Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers, 1(1): 18-44. https://doi.org/10.1002/FFT2.15

Torres, A. (2012). Caracterización Física, Química y Compuestos Bioactivos de Pulpa Madura de Tomate de Árbol (Cyphomandra Betacea) (Cav.) Sendtn. Archivos Latinoamericanos de Nutrición, 62(4): 381-388.

Wang, J. Q., Li, J., Zou, Y. H., Cheng, W. M., Lu. C., Zhang, L., Ge, J. F., Huang, C., Jin, Y., Lv, X. W., Hu, C. M. & Liu, L. P. (2009). Preventive effects of total flavonoids of Litsea coreana leve on hepatic steatosis in rats fed with high fat diet. Journal of Ethnopharmacology, 121(1): 54-60. https://doi.org/10.1016/j.jep.2008.09.029

Wang, O., Liu, J., Cheng, Q., Guo, X., Wang, Y., Zhao, L., ... y Ji, B. (2015). Effects of ferulic acid and γ-oryzanol on high-fat and highfructose diet-induced metabolic syndrome in rats. PloS one, 10(2): e0118135. https://doi.org/10.1371/journal.pone.0118135

Xu, Y., Zhang, M., Wu, T., Dai, S., Xu, J. & Zhou, Z. (2015). The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct, 6(1): 296-303. https://doi.org/10.1039/C4FO00970C

Zapata, K., Cortes, F. B. & Rojano, B. A. (2013). Polifenoles y actividad antioxidante del fruto de guayaba agria (Psidium Araca). Información Tecnológica, 24(5): 103.112. http://dx.doi.org/10.4067/S0718-07642013000500012

Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in Physiology, 10, 1607. https://doi.org/10.3389/FPHYS.2019.01607

Zhang, H. & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42. https://doi.org/10.1016/j.cofs.2016.02.002

Zhao, Z. & Moghadasian, M. H. (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4): 691-702. https://doi.org/10.1016/j.foodchem.2008.02.039
Sistema OJS - Metabiblioteca |