Autores/as
Resumen
Se evaluaron las diferencias morfométricas entre sexos en individuos de Sicalis flaveola en el Valle del Cauca, suroccidente de Colombia. El sexo se determinó a partir de métodos moleculares, comportamiento reproductivo y caracteres morfológicos. Se realizó un análisis de función discriminante a partir de 12 medidas corporales de individuos adultos con plumaje maduro. Las medidas corporales fueron muy similares entre los sexos, acorde a lo esperado en paserinos monógamos. Los machos fueron significativamente más grandes que las hembras en alas, rectrices y distancia entre primarias y secundarias; mientras que las hembras tuvieron picos significativamente más anchos que los machos. Se encontró una ecuación que permite identificar el sexo con una exactitud del 77,8 %. Se propone el método morfométrico como una alternativa de menor costo fisiológico y económico en comparación con métodos moleculares para la determinación del sexo de individuos de la especie.
Palabras clave:
Citas
Andersson, M. (1982). Female choice selects for extreme tail length in a widowbird. Nature, 299(5886), 818. https://doi.org/10.1038/299818a0
Andersson, M. (1994). Sexual Selection. New Jersey: Princeton University Press. https://doi.org/10.1515/9780691207278
Andersson, S., y Andersson, M. (1994). Tail ornamentation, size dimorphism and wing length in the genus Euplectes (Ploceinae). Auk, 111(1), 80-86. https://doi.org/10.2307/4088507
Ardila-Téllez, J. D. y Cruz-Bernate, L. (2014). Aspectos ecológicos de las aves migratorias neárticas en el campus de la Universidad del Valle Bol. Cient. Mus. Hist. Nat. U. de Caldas, 18(2), 93-109. http://190.15.17.25/boletincientifico/downloads/Boletin(18)2_8.pdf
Baldwin, M. W., Winkler, H., Organ, C. L. y Helm, B. (2010). Wing pointedness associated with migratory distance in common- -garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol., 23(5), 1050-1063. https://doi.org/10.1111/j.1420-9101.2010.01975.x
Blanco, G., Tella, J. L. y Torre, I. (1996). Age and Sex Determination of Monomorphic Non-Breeding Choughs: A Long-Term Study. J. Field Ornithol., 67(3), 428-433. https://www.jstor.org/stable/4514134
Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. Q Rev Biol, 75(4), 385-407. https://doi.org/10.1086/393620
Blanckenhorn, W. U. (2005). Behavioral causes and consequences of sexual size dimorphism. Ethology, 111(11), 977-1016. https://doi.org/10.1111/j.1439-0310.2005.01147.x
Bosch, M. (1996). Sexual Size Dimorphism and Determination of Sex in Yellow-Legged Gulls. J. Field Ornithology, 67(4) 534-541. https://www.jstor.org/stable/4514155
Bourgeois, K., Curé, C., Legrand, J., Gómez-Díaz, E., Vidal, E., Aubin, T. y Mathevon, N. (2007). Morphological versus acoustic analysis: what is the most efficient method for sexing yelkouan shearwaters Puffinus yelkouan?. J. Ornithol., 148(3), 261-269. https://doi.org/10.1007/s10336-007-0127-3
Burnham, H. (2019). Cuidado paternal en el Sicalis Coronado (Scalis flaveola): ¿A mayor inversión paternal mayor éxito reproductivo? (Tesis de maestría). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.
Catry, P., Phillips, R. A., Croxall, J. P., Ruckstuhl, K. y Neuhaus, P. (2006). Sexual segregation in birds: patterns, processes and implications for conservation. En K. Ruckstuhl y P. Neuhaus (eds). Sexual segregation in vertebrates: ecology of the two sexes (pp. 351-378). United Kingdom: Cambridge University Press. https://doi.org/10.1017/CBO9780511525629
Claramunt, S., Derryberry, E. P., Remsen JR, J. V. y Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567-1574. https://doi.org/10.1098/rspb.2011.1922
Conklin, J. R., Battley, P. F., Potter, M. A. y Ruthrauff, D. R. (2011). Geographic variation in morphology of Alaska-breeding Bar- -tailed Godwits (Limosa lapponica) is not maintained on their nonbreeding grounds in New Zealand. Auk., 128(2), 363-373. https://doi.org/10.1525/auk.2011.10231
Cuervo, J. J., De Lope, F. y Møiller, A. P. (1996). The function of long tails in female barn swallows (Hirundo rustica): an experimental study. Behavioral Ecology, 7(2), 132-136. https://doi.org/10.1093/beheco/7.2.132
Cuthill, I. C., Bennett, A. T., Partridge, J. C., y Maier, E. J. (1999). Plumage reflectance and the objective assessment of avian sexual dichromatism. Amer. Naturalist., 153(2), 183-200. https://doi.org/10.1086/303160
Cruz-Bernate, L., Riascos, Y. y Barreto, G. (2013). Dimorfismo sexual y determinación del sexo con DNA en el pellar común (Vanellus chilensis). Ornitol. Neotrop., 24(4), 433-444. https://sora.unm.edu/sites/default/files/ON%2024(4)%20433-444.pdf
Corporación Autónoma Regional del Valle del Cauca. (2019). Datos metereológicos 2017-2019, Estación La Independencia 2621900201, Villa Paz, Jamudí, Valle del Cauca.
Darwin, C. (1871). The descent of man and selection in relation to sex. London: Murray. https://books.google.com.co/books?id=caq1MaX56gsC&q
Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. y Böhning-Gaese, K. (2009). Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol., 78(2), 388-395. https://doi.org/10.1111/j.1365-2656.2008.01504.x
Dechaume-Moncharmont, F. X., Monceau, K., y Cezilly, F. (2011). Sexing birds using discriminant function analysis: a critical appraisal. Auk., 128(1), 78-86. https://doi.org/10.1525/auk.2011.10129
Delestrade, A. (2001). Sexual size dimorphism and positive assortative mating in Alpine Choughs (Pyrrhocorax graculus). Auk., 118(2), 553-556. https://doi.org/10.1093/auk/118.2.553
Derryberry, E. P., Claramunt, S., Derryberry, G., Chesser, R. T., Cracraft, J., Aleixo, A. y Brumfield, R. T. (2011). Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution Int. J. Org. Evolution, 65(10): 2973-2986. https://doi.org/10.1111/j.1558-5646.2011.01374.x
Donald, P. F. (2007). Adult sex ratios in wild bird populations. Ibis, 149(4), 671-692. https://doi.org/10.1111/j.1474-919X.2007.00724.x
Donohue, K. C. y Dufty JR, A. M. (2006). Sex determination of Red-tailed Hawks (Buteo jamaicensis calurus) using DNA analysis and morphometrics. J. Field Ornithol., 77(1), 74-79. https://doi.org/10.1111/j.1557-9263.2006.00003.x
Dubiec, A. y Zagalska-Neubauer, M. (2006). Molecular techniques for sex identification in birds. Biol. Lett., 43(1), 3-12. http://www.biollett.amu.edu.pl
Ellegren, H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc. R. Soc. Lond. [Biol]., 263(1377), 1635-1641. https://doi.org/10.1098/rspb.1996.0239
Espinal, L.S. (1967). Visión ecológica del departamento del Valle del Cauca. Santiago de Cali: Universidad del Valle.
Espinosa, C. (2015). Biología reproductiva del Canario silvestre (Sicalis flaveola) en el Valle del Cauca, Colombia (Tesis de pregrado). Universidad del Valle, Facultad de Ciencias Naturales y Exactas, Cali, Colombia.
Espinosa, C., Cruz-Bernate, L. y Barreto, G. (2017). Biología reproductiva de Sicalis flaveola (Aves: Thraupidae) en Cali, Colombia. Bol. Cient. Mus. Hist. Nat. U. de Caldas, 21(2), 101-114. DOI: 10.17151/bccm.2017.21.2.7
Evans, D. R., Hoopes, E. M. y Griffin, C. R. (1993). Discriminating the Sex of Laughing Gulls by Linear Measurements. J. Field Ornithol, 64(4), 472-476.
https://www.jstor.org/stable/4513858
Francis, C. M., y Wood, D. S. (1989). Effects of Age and Wear on Wing Length of Wood-Warblers. J. Field Ornithol, 60(4), 495-503.
https://www.jstor.org/stable/4513472
Frey, S. J., Rimmer, C. C., Mcfarland, K. P. y Menu, S. (2008). Identification and sex determination of Bicknell’s Thrushes using morphometric data. J. Field Ornithology, 79(4), 408-420. https://doi.org/10.1111/j.1557-9263.2008.00192.x
Fridolfsson, A. K. y Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. J. Avian Biol., 30(1), 116-121. https://doi.org/10.2307/3677252
Frith, C. B. (1997). Huia (Heteralocha acutirostris: Callaeidae) -like sexual bill dimorphism in some birds of paradise (Paradisaeidae) and its significance. Notornis, 44, 177-184. http://notornis.osnz.org.nz/system/files/Notornis_44_3_177.pdf
González-Solís, J., Croxall, J. P., y Afanasyev, V. (2007). Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(1), 22-36. https://doi.org/10.1002/aqc.911
Gosler, A. (1987). Some aspects of bill morphology in relation to ecology in the great tit Parus major (Doctoral dissertation). University of Oxford, United Kingdom.https://ora.ox.ac.uk/objects/uuid:db730e58-abdc-4b3f-8a6d-b18d18f77ef3
Gray, C. M., y Hamer, K. C. (2001). Food-provisioning behaviour of male and female Manx shearwaters, Puffinus puffinus. Anim. Behav., 62(1), 117-121. https://doi.org/10.1006/anbe.2001.1717
Greenwood, A. G. (1983). Avian sex determination by laparoscopy. Vet. Rec. 112, 105. http://dx.doi.org/10.1136/vr.112.5.105
Gunness, M. A., y Weatherhead, P. J. (2002). Variation in nest defense in ducks: methodological and biological insights. J. Avian Biol., 33(2), 191-198.
https://doi.org/10.1034/j.1600-048X.2002.330211.x
Gustincich, S., Mamfioletti, G., del Sal, G., Schneider, C. y Carninci, P. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. Biotech., 11(3), 298-302. https://pubmed.ncbi.nlm.nih.gov/1931026/
Hilty, S. L., y Brown, W. L. (2001). Guía de las Aves de Colombia. Colombia: American Bird Conservancy-ABC.
Hughes, C. (1998). Integrating molecular techniques with field methods in studies of social behavior: a revolution results. Ecology, 79(2), 383-399. https://doi.org/10.1890/0012-9658(1998)079[0383:IMTWFM]2.0.CO;2
Jones, D. M., Samour, J. H., Knight, J. A. y Finch, J. M. (1984). Sex determination of monomorphic birds by fibreoptic endoscopy. Vet. Rec., 115(23), 596-598. http://dx.doi.org/10.1136/vr.115.23.596
Kissner, K. J., Weatherhead, P. J. y Francis, C. M. (2003). Sexual size dimorphism and timing of spring migration in birds. J. Evol. Biol., 16(1), 154-162. https://doi.org/10.1046/j.1420-9101.2003.00479.x
León, E., Beltzer, A. y Quiroga, M. (2014). El jilguero dorado (Sicalis flaveola) modifica la estructura de sus vocalizaciones para adaptarse a hábitats urbanos. Rev. Mex. Biodivers., 85(2), 546-552. https://doi.org/10.7550/rmb.32123
Lishman, G. S. (1985). The comparative breeding biology of Adélie and chinstrap penguins Pygoscelis adeliae and P. antarctica at Signy Island, South Orkney Islands. Ibis, 127(1), 84-99. https://doi.org/10.1111/j.1474-919X.1985.tb05039.x
Lockwood, R., Swaddle, J. P. y Rayner, J. M. (1998). Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J. Avian Biol., 29(3), 273-292. https://doi.org/10.2307/3677110
Lovich, J. E. y Gibbons, J. W. (1992). A review of techniques for quantifying sexual size dimorphism. Growth Development and Aging., 56(4), 269-281.
https://www.researchgate.net/profile/Jeff_Lovich/publication/21669086_Lovich_JE_Gibbons_JW_A_review_of_techniques_for_quantifying_sexual_size_dimorphism_Growth_Dev_Aging_56_269-281/links/0deec52824bd931cc4000000.pdf
Mawhinney, K. y Diamond, T. (1999). Sex determination of Great Black-Backed Gulls using morphometric characters. J. Field Ornithol., 70(2), 206-210. https://www.jstor.org/stable/4514402
Marcondes-Machado, L. O. (1982). Poliginia em Sicalis flaveola brasiliensis (Gmelin, 1789) (Passeriformes, Emberizidae). Rev Bras Zool., 1(1), 95-99.
https://doi.org/10.1590/S0101-81751982000100014
Marcondes-Machado, L. O. (1997). Comportamento social de Sicalis flaveola brasiliensis em cativeiro (Passeriformes, Emberizidae). Iheringia, Sér. Zool., 82, 151-158. https://biblat.unam.mx/es/revista/iheringia-serie-zoologia/articulo/comportamento-social-de--sicalis-flaveola-brasiliensis-em-cativeiro-passeriformes-emberizidae
Marques-Santos, F., Wischhoff, U., Roper, J. J. y Rodrigues, M. (2018). Delayed plumage maturation explains differences in breeding performance of Saffron Finches. Emu., 118(4), 323-333. https://doi.org/10.1080/01584197.2018.1450637
Møller, A. P. (2002). Temporal change in mite abundance and its effect on barn swallow reproduction and sexual selection. J. Evol. Biol., 15(3), 495-504.
https://doi.org/10.1046/j.1420-9101.2002.00386.x
Møller, A. P., Chabi, Y., Cuervo, J. J., de Lope, F., Kilpimaa, J., Kose, M. y Schifferli, L. (2006). An analysis of continent-wide patterns of sexual selection in a passerine bird. Evolution, 60(4), 856-868. https://doi.org/10.1111/j.0014-3820.2006.tb01162.x
Moorhouse, R. J., Sibley, M. J., Lloyd, B. D., y Greene, T. C. (1999). Sexual dimorphism in the North Island Kaka Nestor meridionalis septentrionalis: selection for enhanced male provisioning ability?. Ibis, 141(4), 644-651. https://doi.org/10.1111/j.1474-919X.1999.tb07372.x
Morrison, D. F. (1976). Multivariate Statistical Methods. Auckland: McGraw-Hill series in probability and statistics. https://books.google.com.co/books/about/Multivariate_Statistical_Methods.html?id=9fAUAAAAIAAJ&redir_esc=y
Nebel, S. (2005). Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning?. Acta Oecologica, 28(1), 33-38. https://doi.org/10.1016/j.actao.2005.02.002
Norberg, U. M. (1995). How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecology, 9(1), 48-54. https://doi.org/10.2307/2390089
Owens, I. P. y Hartley, I. R. (1998). Sexual dimorphism in birds: why are there so many different forms of dimorphism?. Proc R Soc Lond [Biol], 265(1394), 397-407. https://doi.org/10.1098/rspb.1998.0308
Palmerio, A. G. (2012). Maduración tardía del plumaje y costo reproductivo en el Jilguero Dorado Sicalis flaveola (Doctoral dissertation). Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. https://bibliotecadigital.exactas.uba.ar/collection/tesis/document/tesis_n5164_Palmerio
Palmerio, A. G. y Massoni, V. (2009). Reproductive biology of female Saffron Finches does not differ by the plumage of the mate. Condor., 111(4), 715-721. https://doi.org/10.1525/cond.2009.080044
Palmerio, A. G., y Massoni, V. (2011). Parental care does not vary with age-dependent plumage in male Saffron Finches Sicalis flaveola. Ibis, 153(2), 421-424. https://doi.org/10.1111/j.1474-919X.2011.01103.x
R CORE TEAM. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en http://www.R-project.org
Radford, A. N., y Du Plessis, M. A. (2003). Bill dimorphism and foraging niche partitioning in the Green Woodhoopoe. Journal of Animal Ecology, 72(2), 258-269. https://doi.org/10.1046/j.1365-2656.2003.00697.x
Radford, A. N., y Du Plessis, M. A. (2004). Extreme sexual dimorphism in Green Woodhoopoe (Phoeniculus purpureus) bill length: A case of sexual selection?. Auk., 121(1), 178-183. https://doi.org/10.1093/auk/121.1.178
Regosin, J. V., y Pruett-Jones, S. (2001). Sexual selection and tail-length dimorphism in Scissor-tailed Flycatchers. Auk., 118(1), 167-175. https://doi.org/10.1093/auk/118.1.167
Richner, H. (1989). Avian Laparoscopy as a Field Technique for Sexing Birds and an Assessment of Its Effects on Wild Birds. J. Field Ornithol., 60(2), 137-142. https://www.jstor.org/stable/4513412
Rising, J., Jaramillo, A., Copete, J. L., Madge, S. y Ryan, O. (2011). Family Emberizidae (Buntings and New World Sparrows). En J. Del Hoyo, A. Elliot y A. Christie (eds). Handbook of the Birds of the World (pp. 428-876). (Volume 16: Tanagers to New World Blackbirds). Barcelona: Lynx Editions. https://doi.org/10.1525/auk.2013.130.3.555
Romero-Pujante, M., Hoi, H., Blomqvist, D. y Valera, F. (2002). Tail length and mutual mate choice in bearded tits (Panurus biarmicus). Ethology, 108(10), 885-895. https://doi.org/10.1046/j.1439-0310.2002.00821.x
Saldivar, M. J. B. y Massoni, V. (2018). Lack of conspecific visual discrimination between second-year males and females in the Saffron Finch. PloS one, 13(12) e0209549. https://doi.org/10.1371/journal.pone.0209549
Saldívar, M. J. B., Miño, C. I. y Massoni, V. (2019). Genetic mating system, population genetics and effective size of Saffron Finches breeding in southern South America. Genetica, 147(3-4), 315-326. https://doi.org/10.1007/s10709-019-00072-4
Sambrook, J. y Russell, D. W. (2001). Molecular Cloning: A laboratory manual. New York: Cold spring Harbor Laboratory Press. https://www.cshlpress.com/pdf/sample/2013/MC4/MC4FM.pdf
Székely, T., Reynolds, J. D. y Figuerola, J. (2000). Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution, 54(4), 1404–1413. https://doi.org/10.1111/j.0014-3820.2000.tb00572.x
Székely, T., Lislevand, T. y Figuerola, J. (2007). Sexual size dimorphism in birds. In D. Fairbairn, W. Blanckenhorn, & T. Székely (eds.). Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (pp. 27-37). United Kingdom: Oxford University Press. DOI:10.1093/acprof:oso/9780199208784.001.0001
Sokal, R. R., y Rohlf, E. J. (1995). Biometry. New York: W. H. Freeman and Co. https://doi.org/10.2307/2343822
Suhonen, J., y Kuitunen, M. (1991). Intersexual foraging niche differentiation within the breeding pair in the Common Treecreeper Certhia familiaris. Ornis Scandinavica, 22(4), 313-318. https://doi.org/10.2307/3676502
Suthers, H. B. (1994). Sex determination by wing and tail measurements in the Song Sparrow and Field Sparrow. N. Am. Bird-Bander, 19, 77-83. https://sora.unm.edu/sites/default/files/journals/nabb/v019n03/p0077-p0083.pdf
Symonds, M. R. y Tattersall, G. J. (2010). Geographical variation in bill size across bird species provides evidence for Allen’s rule. Amer. Naturalist., 176(2), 188-197. https://doi.org/10.1086/653666
Temeles, E. J., Pan, I. L., Brennan, J. L. y Horwitt, J. N. (2000). Evidence for ecological causation of sexual dimorphism in a hummingbird. Science, 289(5478), 441-443.
Thode, H. C. (2002). Testing for Normality (Vol. 164). New York: CRC press.
Thomas, A. L. (1996). The flight of birds that have wings and a tail: variable geometry expands the envelope of flight performance. J. Theor. Biol., 183 (3): 237-245. https://doi.org/10.1126/science.289.5478.441
Thomas, A. L. (1997). On the tails of birds. Bioscience, 47 (4): 215-225. https://doi.org/10.2307/1313075
Thomas, A. L., y Taylor, G. K. (2001). Animal flight dynamics I. Stability in gliding flight. J. Theor. Biol., 212 (3): 399-424. https://doi.org/10.1006/jtbi.2001.2387
Venables, W. N., y Ripley, B. D. (2002). Modern Applied Statistics with S. New York: Springer. https://doi.org/10.1007/b97626
Warrick, D. R., Bundle, M. W., y Dial, K. P. (2002). Bird maneuvering flight: blurred bodies, clear heads. Integrative and Comparative Biology, 42 (1): 141-148. https://doi.org/10.1093/icb/42.1.141
Webster, M. S. (1992). Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). Evolution, 46 (6): 1621-1641.
https://doi.org/10.1111/j.1558-5646.1992.tb01158.x
Wilson, R. R. (1999). Sex Determination of the Acadian Flycatcher Using Discriminant Analysis. J. Field Ornithol., 70 (4): 514-519. https://www.jstor.org/stable/4514444
Yamazaki, Y., Yamato, A., Yamada, A., y Nishiwaki, K. (1994). Sex determination of Humboldt Penguins (Spheniscus humboldti) using an original designed restraint. Penguin Conserv, 7: 7-11. https://www.jstor.org/stable/4514199
Yan-Ping, F., Yan-Zhang, G., Affara, N. A., Xiu-Li, P., Jin-Feng, Y., Rui-Xia, Z., Yusuf, M., Jeffer, O., y Shu-Jun, Z. (2006). Analysis of the offspring sex ratio of chicken by using molecular sexing. Agric. Sci. in China, 5: 545–549. https://doi.org/10.1016/S1671-2927(06)60090-4
Zavalaga, C. B., y Paredes, R. (1997). Sex Determination of Adult Humboldt Penguins Using Morphometric Characters. J. Field Ornithol., 68 (1): 102-112. https://www.jstor.org/stable/4514199