DOI: 10.17151/bccm.2020.24.1.4
Cómo citar
Murillo Ramírez, O., Ramírez Montoya, M. C. ., & Soto Giraldo, . A. (2020). Efecto de dosis subletales de azadirachtina en la capacidad de búsqueda del parasitoide Encarsia formosa Gahan. Boletín Científico Centro De Museos Museo De Historia Natural, 24(1), 68–75. https://doi.org/10.17151/bccm.2020.24.1.4

Autores/as

Oswaldo Murillo Ramírez
Universidad de Caldas
oswaldo.501320837@ucaldas.edu
https://orcid.org/0000-0001-7446-9475
María Camila Ramírez Montoya
Universidad de Caldas
maria.501412640@ucaldas.edu.co
Alberto Soto Giraldo
Universidad de Caldas
alberto.soto@ucaldas.edu.co
https://orcid.org/0000-0002-9727-8919

Resumen

Objetivos. Evaluar el efecto de la azadirachtina sobre la capacidad de búsqueda del parasitoide Encarsia formosa por volátiles provenientes de plantas de fríjol infestadas por Trialeurodes vaporariorum Alcance. La azadirachtina no afecta la capacidad de búsqueda de E. formosa. Metodología. Fue evaluado el efecto de la azadirachtina en dosis subletal sobre la capacidad de búsqueda del parasitoide E. formosa por volátiles provenientes de plantas de fríjol infestadas por T. vaporariorum. Principales resultados. Cuando T. vaporariorum fue asperjado con la dosis subletal de azadirachtina, el parasitoide E. formosa expuesto a residuos de azadirachtina continuó prefiriendo los olores de plantas de fríjol infestadas con T. vaporariorum a los de plantas no infestadas. Conclusiones: La azadirachtina aplicada en la dosis subletal no afecta la capacidad de búsqueda de E. formosa sobre T. vaporariorum.

Ángeles, L.Y.I., Martínez, G.N.A., Ramírez, R.R., López, M.G., Sánchez, H.C. & Délano, F.J.P. (2012). Cross-Kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum). J. Chem. Ecol., 38(11), 1376-1386.

Arab, A. & Bento, J.M.S. (2006). Plant volatiles: new perspectives for research in Brazil. Neotropical Entomol, 35(2), 151-158.

Arimura, G., Ozawa, R., Shimoda, T., Nishiokai, T., Boland, W. & Takabayashi, J. (2000). Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature., 406, 512-515.

Calyecac, C.H.G., Cibrián, T.J., López, C.J. & García, V.R. (2006). Emisores de los volátiles de atracción de Trichobaris championi Barber. Agrociencia. 40(5), 655-663.

Cantúa, J.A., Flores, A. & Valenzuela, J.H. (2019). Compuestos orgánicos volátiles de plantas inducidos por insectos: situación actual en México. Revista Mexicana de Ciencias Agrícolas, 10 (3), 729-742.

D’Alessandro, M., Brunner, V., Von Mérey, G. & Turlings, T.C. (2009). Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. Journal of Chemical Ecology, 35, 999-1008.

De Moraes, C.M., Leiws, W.J., Pare, P.W., Alborn, H.T. & Tumlinson, J.H. (1998). Herbivore-infested plants selectively attract parasitoids. Nature, 393, 570-573.

Dicke, M. & Baldwin, I.T. (2010). The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci., 15(3), 167-175.

Dong, F., Fu, X., Watanabe, N., Su, X. & Yang, Z. (2016). Recent advances in the emission and functions of plant vegetative volatiles. Molecules., 21(2), 1-10.

Du, Y., Poppy, G.M., Powell, W., PIckett, J.A., Wadhams, L.J. & Woodcock, C.M. (1998). Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. Journal of Chemical Ecology, 24, 1355-1368.

Filella, I., Bosch, J., Llusià, J., Peñuelas, A. & Peñuelas, J. (2011). Chemical cues involved in the attraction of the oligolectic bee Hoplitis adunca to its host plant Echium vulgare. Biochemical Systematics and Ecology, 39(4–6), 498-508.

Gutierrez, J.C. (2016). Efecto insecticida de extractos vegetales sobre Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) y sobre el parasitoide Encarsia formosa (Hymenoptera: Aphelinidae) (tesis de pregrado). Universidad de Caldas, Manizales, Colombia.

Holopainen, J.K. & Gershenzon, J. (2010). Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 15(3), 176-184.

James, D.G. (2005). Further evaluation of synthetic herbivore-induced plant volátiles as attractants for beneficials insects. Journal of Chemical Ecology 31, 481-495.

Khan, Z.R., James, D.G., Midega, C.A.O. & Pickett, J.A. (2008). Chemical ecology and conservation biological control. Biological Control, 45, 210-224.

Knudsen, J.T. & Gershenzon, J. (2006). The chemical diversity of floral scent. In N. Dudareva. & E. Pichersky. (Eds.), Biology of Floral Scent (pp. 27–45). Boca Raton: Taylor & Francis Group.

Marín, L.J.C. & Céspedes, C.L. (2007). Compuestos volátiles de plantas. Origen, emisión, efectos, análisis y aplicaciones al agro. Rev. Fitotec. Mex., 30(4), 327-351.

Martínez, A. (2013). Introducción a la ecología química y su uso en el manejo de insectos plaga en sistemas forestales. En J. Villacide. y J. Corley. (Eds), Manejo integrado de plagas forestales (pp. 1-14). Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria.

Mattiacci, L., Dicke, M. & Posthumus, M.A. (1995). β-glucosidase: an elicitor of herbivore-induced plant odor that attracts hostsearching parasitic wasps. Proceedings of the National Academy of Sciences, 92, 2036-2040.

Michereff, M. F. F., Laumann, R. A., Borges, M., Michereff, F. M., Diniz, I. R., Neto, A.L.F. & Moraes, M. C. B. (2011). Volátiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars. J. Chem. Ecol., 37(3), 273-285.

Ortiz, F.R., Hernández, J.C. & Malo, E.A. (2019). Respuesta olfativa de Chelonus insularis Cresson, 1865 (Hymenoptera: Braconidae) a compuestos volátiles emitidos por plantas de maíz. Entomología mexicana, 6, 346−351.

Pallini, A., Janssen, A. & Sabelis, M. W. (1997). Odour- mediated responses phytophagous mites to conspecific and heterospecific competitors. Oecologia, 110, 179-185.

Patiny, S. (2012). Evolution of plant-pollinator relationships. Cambridge: Cambridge University Press.

Peñaflor, M.F.G.V. & Bento, J.M.S. (2013). Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotropical Entomol., 42(4), 331-343.

Pichersky, E., Noel, J.P. & Dudareva, N. (2006). Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 311(5762), 808-811.

Ponzio, C., Gols, R., Pieterse, C.M.J. & Dicke, M. (2013). Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecol. 27(3), 587-598.

Ramírez, C.C., Fuentes, E., Rodríguez, L.C. & Niemeyer, H.M. (2000). Pseudoreplication and its frequency in olfatometric laboratory studies. Journal of Chemical Ecology, 26: 1423-1431.

Röse, U.S.R., Manukian, A., Heath, R.R. & Tumlinson, J.H. (1996). Volatile semiochemicals released from undamaged cotton leaves. Plant Physiology, 111, 487-495.

Scala, A., Allmann, S., Mirabella, R., Haring, M.A. & Schuurink, R.C. (2013). Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens. Inter. J. Mol. Sci., 14(9), 17781-17811.

Schettino, M., Grasso, D.A., Weldegergis, B.T., Castracani, C., Mori, A., Dicke, M., Van Lenteren, J.C. & Van Loon, J.J.A. (2017). Response of a predatory ant to volatiles emitted by aphid and caterpillar-infested cucumber and potato plants. J. Chem. Ecol., 43(10), 1007-1022.

Sharma, H.C., Ward, A.R., Paulraj, M.G., Ahmad, T., Buhro, A.H., Hussain, B. & Ignacimuthu, S. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling and Behavior., 7(10), 1306-1320.

Shi, X., Chen, G., Tian, L., Peng, Z., Xie, W., Wu, Q., Wang, S., Zhou, X. & Zhang, Y. (2016). The salicylic Acid-mediated release of plant volatiles affects the host choice of Bemisia tabaci. Inter. J. Mol. Sci., 17 (7), 1-11.

Sokal, R. R. & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman.

Stenberg, J.A., Heil, M., Ahman, I. & Björkman, C. (2015). Optimizing Crops for Biocontrol of Pests and Disease. Trends Plant Sci., 20(11), 698-712.

Takabayashi, J. & Dicke, M. (1996). Plant-carnivore mutualism through herbivore-induced carnivore attractants. Plant Science., 1, 109-113.

Ton, J., D’Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B. & Turlings, T.C. (2007). Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal, 49, 16-26.

Turlings, T.C.J. & Wäckers, F.L. (2004). Recruitment of predators and parasitoids by herbivore-damaged plants. In R. T. Carde & J. G. Miller (Eds), Advances in Insect Chemical Ecology (pp. 21-75). New York: Cambridge University Press.

Turlings, T.C.J., Loughrin, J.H., McCall, P.J., Rose, U.S.R., Lewis, W.J. & Tumlinson, J.H. (1995). How caterpillars-damaged plants protect themselves by attracting parasitic wasps. Proceedings of the National Academy of Sciences, 92, 4169-4174.

Venzon, M., Janssen, A. & Sabelis, M.W. (1999). Attraction of a generalist predator towards herbivore-infested plants. Entomologia Experimentalis et Applicata, 93, 305-314.

Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G. & Mancuso, S. (2017). The network of plants volatile organic compounds. Scientific Reports, 7(1), 1-18.

Zabala, J.A. (2010). Respuestas inmunológicas de las plantas frente al ataque de insectos. Universidad Católica de Argentina, 20 (117), 53-59.
Sistema OJS - Metabiblioteca |