Autores/as
Resumen
Objetivo: Analizar los cambios fotosintéticos de las especies Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. y Salvinia auriculata Aubl. sometidas a un tratamiento con agua residual de mina. Metodología: Se expuso a las plantas a un tratamiento a escala de laboratorio con agua residual proveniente de una región minera de Caldas (Colombia) durante seis días (144 horas). Los componentes principales del agua se determinaron con test Nanocolor y los cambios fotosintéticos en las plantas durante la exposición al agua residual se determinaron por métodos espectrofotométricos. Resultados: El agua residual de mina es una matriz compleja cuyo componente mayoritario es el cianuro (CN-) con un valor de 175,00 mg/L superando las disposiciones del Ministerio de Ambiente y Desarrollo Sostenible de Colombia; las relaciones de clorofi la a/b y carotenos/clorofila total indicaron que las plantas E. crassipes y P. stratiotes respondieron al tratamiento modifi cando las concentraciones de los pigmentos analizados.
Conclusiones: La planta E. crassipes disminuyó la relación clorofi la a/b como indicador de estrés, la planta P. stratiotes aumentó la relación carotenos/clorofi la total aumentando la síntesis de carotenos para proteger los tejidos contra el estrés y la planta S. auriculata fue la menos afectada, lo que se traduce en una alta tolerancia o adaptación de esta última especie a los cambios ambientales.
Palabras clave:
Citas
ASHRAF, M., & HARRIS, P., 2013.- Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2): 163-190.
ÁVILA, O., CASIERRA, F., RIASCOS, D., 2012.- Contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra. Temas agrarios, 17(1): 60-71.
BAO, A., 2015.- Toxicidad ejercida por el triclosán sobre la microalga dulceacuícola Chlamydomonas moewusii Gerloff: Tesis, Universidad de La Coruña, Facultad de Ciencias, La Coruña.
BASANT, A., MALIK, A., SINGH, K., SINHA, S., 2009.- Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology, 5(18): 555-566.
CALLEJAS, K., CONTRERAS, A., MORALES, L. & PEPPI, C., 2013.- Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 4(31): 1-25.
CAMBRÓN, V., HERRERÍAS, Y., ESPAÑA, M., SÁENZ, C., SÁNCHEZ, N. & VARGAS, J., 2011.- Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo. Revista Chapingo serie ciencias forestales y del ambiente, 17(2): 253-260.
CRUZ, A., FORTES, D., HERRERA, R., GARCÍA, M., GONZÁLEZ, S. & ROMERO, A., 2009.- Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT-115 en la estación poco lluviosa. Revista Cubana de Ciencia Agrícola, 43(2): 183-186.
DHIR, B., & SRIVASTAVA, S., 2013. - Heavy Metal Tolerance in Metal Hyperaccumulator Plant, Salvinia natans. S. Bull Environ Contam Toxicol, 90: 720.
DHIR, B., KUMAR, R., MEHTA, D., SARADHI, P., SHARMA, A., & SHARMILLA, P., 2011. - Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety, 6(74): 1678-1684.
EBEL, M., EVANGELOU, M. & SHAEFFER, A., 2007. - Cyanide phytoremediation by water hyacinths (Eichhorniacrassipes). Chemosfere, 66(5): 816-823.
FARNESE, J., GUSMAN, G., LEAO, G. & OLIVEIRA, J., 2013.- Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. Braz J Biol, 3(74): 1201-1209.
FASIDI, I. & ODJEGBA, V., 2004.- Accumulation of Trace Elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 7(13): 637-646.
FLORES, E. & JARAMILLO, M., 2012.- Fitorremediación mediante el uso de dos especies vegetales Lemnaminor (Lenteja de agua), y Eichhornia crassipes (Jacinto de agua) en aguas residuales producto de la actividad minera: Tesis, Universidad Politécnica Salesiana de Ecuador, Cuenca-Ecuador.
FLORES, M., GUERRERO, J. & VERGARA, F., 2011.- Efecto del tiempo de almacenamiento y tipo de procesamiento en los antioxidantes de nopal. Temas selectos de ingeniería de alimentos, 5(2): 84-96.
GOEL, N., HARRON, J., HU, B., MILLER, J., MOHAMMED, G., NOLAND, T., SAMPSON, P. & ZARCO, P., 2004.- Needle chlorophyll content estimation through modelling version using hyperspectral data from boreal conifer forest canopies. Remote Sensing of Environment, 89(2): 189-199.
GÓMEZ, J., MONROY, O., OLGUÍN, E., SÁNCHEZ, G., 2008. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water, Air and Soil Pollution, 1(194): 77-90.
GONZÁLEZ, A., 2009.- Aplicación del medidor portátil de clorofila en programas de mejora de trigo y cebada. Agroecología, 4: 111-116.
GONZÁLEZ, J., HILAL, M., PAGANO, E., PRADO, C., PRADO, F. & RODRÍGUEZ, L., 2010.- Uptake of chromium by Salvinia minima: Effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials, 1-3(177): 546-553.
HANOVER, J. & TOWNSEND, A., 1972.- Altitudinal variation in photosynthesis, growth, and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genetica, 21(3-4): 133-139.
KUMAR, N., RAI, N., SINGH, R., & TEWARI, A., 2008.- Amelioration of municipal sludge by Pistia stratiotes L.: Role of antioxidant enzymes in detoxification of metals. Bioresource Technology, 18(99): 8715-8721.
LARA, J. & MARTELO, J., 2012.- Macrófitas flotantes en el tratamiento de aguas residuales: una revisión del estado del arte. Ingeniería y Ciencia, 8(15): 221-243.
MAITI, D. & PRASAD, B., 2016.- Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and non-mining areas: a field study. Biorem. J, 2(20): 144-152.
RASHED, M., & SOLTAN, M., 2003.- Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research, 7(2): 321-334.
SERRANO, M., 2006.- Fitorremediación: una alternativa para la recuperación de suelos contaminados por hidrocarburos. Universidad Industrial de Santander. Escuela de Química.